Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross-linking

被引:125
作者
Heuer, TS
Brown, PO
机构
[1] STANFORD UNIV,MED CTR,DEPT BIOCHEM,STANFORD,CA 94305
[2] STANFORD UNIV,MED CTR,PROGRAM CANC BIOL,STANFORD,CA 94305
[3] STANFORD UNIV,MED CTR,HOWARD HUGHES MED INST,STANFORD,CA 94305
关键词
D O I
10.1021/bi970782h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The virally encoded integrase protein carries out retroviral integration, and to do so, it must make specific interactions with both viral and target DNA sequences. The retroviral integrase has three domains: an amino-terminal region of about 50 amino acids that contains a zinc finger-like motif, a tightly folded, phylogenetically conserved core domain that contains the active site, and a carboxy-terminal domain that can bind DNA in a nonspecific manner. The complete roles of the amino-and carboxyl-terminal domains have not yet been determined, but they appear to participate in multimerization and nonspecific or target DNA binding, respectively. The number and identity of integrase's DNA binding sites have been difficult to determine by conventional mutagenesis studies. In this report, we describe a photo-cross-linking approach to address these issues. Our findings suggest that HIV-1 integrase contacts with conserved features of the viral DNA end are likely to be mediated by residues in two peptides within the conserved core domain. Additional cross-links were seen between viral DNA and the carboxyterminal DNA binding domain. Numerous sites in integrase, including peptides in each of the three domains, could be cross-linked to target DNA features. Integrase is known to function as a multimer, and it remains to be determined which specific contacts are in cis or trans with respect to the active site.
引用
收藏
页码:10655 / 10665
页数:11
相关论文
共 49 条
[1]  
ALDEZ H, 1996, CELL, V85, P257
[2]   A NUCLEOPROTEIN COMPLEX MEDIATES THE INTEGRATION OF RETROVIRAL DNA [J].
BOWERMAN, B ;
BROWN, PO ;
BISHOP, JM ;
VARMUS, HE .
GENES & DEVELOPMENT, 1989, 3 (04) :469-478
[3]   RETROVIRAL INTEGRATION - STRUCTURE OF THE INITIAL COVALENT PRODUCT AND ITS PRECURSOR, AND A ROLE FOR THE VIRAL IN PROTEIN [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2525-2529
[4]   CORRECT INTEGRATION OF RETROVIRAL DNA INVITRO [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
CELL, 1987, 49 (03) :347-356
[5]   HIGH-RESOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF AVIAN-SARCOMA VIRUS INTEGRASE [J].
BUJACZ, G ;
JASKOLSKI, M ;
ALEXANDRATOS, J ;
WLODAWER, A ;
MERKEL, G ;
KATZ, RA ;
SKALKA, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (02) :333-346
[6]   SEQUENCE REQUIREMENTS FOR INTEGRATION OF MOLONEY MURINE LEUKEMIA-VIRUS DNA INVITRO [J].
BUSHMAN, FD ;
CRAIGIE, R .
JOURNAL OF VIROLOGY, 1990, 64 (11) :5645-5648
[7]   INTEGRATION OF HUMAN-IMMUNODEFICIENCY-VIRUS DNA - ADDUCT INTERFERENCE ANALYSIS OF REQUIRED DNA SITES [J].
BUSHMAN, FD ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (08) :3458-3462
[8]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[9]   SUBSTRATE FEATURES IMPORTANT FOR RECOGNITION AND CATALYSIS BY HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE IDENTIFIED BY USING NOVEL DNA SUBSTRATES [J].
CHOW, SA ;
BROWN, PO .
JOURNAL OF VIROLOGY, 1994, 68 (06) :3896-3907
[10]   REVERSAL OF INTEGRATION AND DNA SPLICING MEDIATED BY INTEGRASE OF HUMAN-IMMUNODEFICIENCY-VIRUS [J].
CHOW, SA ;
VINCENT, KA ;
ELLISON, V ;
BROWN, PO .
SCIENCE, 1992, 255 (5045) :723-726