Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning

被引:31
作者
Bokhan, Denis [1 ,2 ]
Mastiukova, Alena S. [2 ,3 ]
Boev, Aleksey S. [2 ]
Trubnikov, Dmitrii N. [1 ]
Fedorov, Aleksey K. [2 ,3 ]
机构
[1] Lomonosov Moscow State Univ, Dept Chem, Phys Chem Div, Lab Mol Beams, Moscow, Russia
[2] Russian Quantum Ctr, Moscow, Russia
[3] Natl Univ Sci & Technol MISIS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
quantum learning; multinomial classification; paramaterized quantum circuit; variational circuits; amplitude encoding; POWER;
D O I
10.3389/fphy.2022.1069985
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multiclass classification is of great interest for various applications, for example, it is a common task in computer vision, where one needs to categorize an image into three or more classes. Here we propose a quantum machine learning approach based on quantum convolutional neural networks for solving the multiclass classification problem. The corresponding learning procedure is implemented via TensorFlowQuantum as a hybrid quantum-classical (variational) model, where quantum output results are fed to the softmax activation function with the subsequent minimization of the cross entropy loss via optimizing the parameters of the quantum circuit. Our conceptional improvements here include a new model for a quantum perceptron and an optimized structure of the quantum circuit. We use the proposed approach to solve a 4-class classification problem for the case of the MNIST dataset using eight qubits for data encoding and four ancilla qubits; previous results have been obtained for 3-class classification problems. Our results show that accuracies of our solution are similar to classical convolutional neural networks with comparable numbers of trainable parameters. We expect that our finding provide a new step towards the use of quantum neural networks for solving relevant problems in the NISQ era and beyond.
引用
收藏
页数:9
相关论文
共 46 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]   Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing [J].
Albash, Tameem ;
Lidar, Daniel A. .
PHYSICAL REVIEW X, 2018, 8 (03)
[3]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[4]   Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices [J].
Benedetti, Marcello ;
Realpe-Gomez, John ;
Perdomo-Ortiz, Alejandro .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03)
[5]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[6]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[7]   Quantum computing [J].
Brassard, G ;
Chuang, I ;
Lloyd, S ;
Monroe, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11032-11033
[8]  
Broughton M, 2021, Arxiv, DOI arXiv:2003.02989
[9]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[10]   A hybrid classical-quantum approach for multi-class classification [J].
Chalumuri, Avinash ;
Kune, Raghavendra ;
Manoj, B. S. .
QUANTUM INFORMATION PROCESSING, 2021, 20 (03)