Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations

被引:8
作者
Lindblom, O [1 ]
Euler, N [1 ]
机构
[1] Lulea Univ Technol, Dept Math, Lulea, Sweden
关键词
nonlinear systems of multidimensional PDEs; singularity Painleve analysis; linearization; exact solutions;
D O I
10.1023/A:1015428229008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose several approaches for solving two discrete-velocity Boltzmann equations using the rescaling ansatz and the truncated Painleve expansions. We use solutions of the two- and three-dimensional Bateman equations for the singularity manifold conditions to reduce the problem to Riccati equations. Both equations fall the Painleve test.
引用
收藏
页码:595 / 608
页数:14
相关论文
共 7 条
[1]  
CABANNES H, 1994, COMPUTATIONAL FLUID, P103
[2]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[3]   SIMILARITY REDUCTIONS FROM EXTENDED PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1991, 53 (01) :59-70
[4]  
EULER N, 2000, INT J DIFF EQS APPL, V1, P205
[5]  
GODUNOV SK, 1972, RUSS MATH SURV, V26, P1
[6]  
Steeb W.-H., 1988, NONLINEAR EVOLUTION
[7]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526