A Novel Strategy to Fabricate CuS, Cu7.2S4, and Cu2-xSe Nanofibers via Inheriting the Morphology of Electrospun CuO Nanofibers

被引:2
作者
Cheng, Li [1 ]
Li, Dan [1 ]
Yu, Wensheng [1 ]
Ma, Qianli [1 ]
Dong, Xiangting [1 ]
Wang, Xinlu [1 ]
Wang, Jinxian [1 ]
Liu, Guixia [1 ]
机构
[1] Changchun Univ Sci & Technol, Key Lab Appl Chem & Nanotechnol Univ Jilin Prov, Changchun 130022, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; nanofiber; CuS; Cu7.2S4; Cu2-xSe; sulfurization; selenidation; LARGE-SCALE SYNTHESIS; HYDROTHERMAL SYNTHESIS; PHOTOCATALYTIC PROPERTIES; CONTROLLABLE SYNTHESIS; BIOCL NANOSHEETS; COPPER; NANOPARTICLES; NANOCRYSTALS; DEGRADATION; TEMPERATURE;
D O I
10.1134/S0036024419040198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CuO nanofibers were fabricated by calcination of the electrospun PVP/Cu(NO3)(2) composite nanofibers. For the first time, CuS, Cu7.2S4, and Cu2-xSe nanofibers were successfully synthesized by double-crucible sulfurization and selenidation methods via inheriting the morphology of CuO nanofibers as precursors, respectively. X-ray diffraction (XRD) analysis shows CuS, Cu7.2S4, and Cu2-xSe nanofibers are respectively pure hexagonal phase, cubic phase and orthorhombic phase with space group of P63/mmc, Fm-3m and Cmcm. Scanning electron microscopy (SEM) indicates that the diameter of CuS, Cu7.2S4, and Cu2-xSe nanofibers are 149.60 +/- 17.52, 103.40 +/- 12.95, and 127.28 +/- 19.55 nm under the 95% confidence level, respectively. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers.
引用
收藏
页码:730 / 735
页数:6
相关论文
共 45 条
[21]   A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape [J].
Nafees, Muhammad ;
Ali, Salamat ;
Idrees, Saima ;
Rashid, Khalid ;
Shafique, Muhammad Ahsan .
APPLIED NANOSCIENCE, 2013, 3 (02) :119-124
[22]   Hollow Copper Sulfide Nanoparticle-Mediated Transdermal Drug Delivery [J].
Ramadan, Samy ;
Guo, Liangran ;
Li, Yajuan ;
Yan, Bingfang ;
Lu, Wei .
SMALL, 2012, 8 (20) :3143-3150
[23]  
Saranya M., 2012, J NANO RES, V18
[24]   Hydrothermal growth of CuS nanostructures and its photocatalytic properties [J].
Saranya, Murugan ;
Santhosh, Chella ;
Ramachandran, Rajendran ;
Kollu, Pratap ;
Saravanan, Padmanapan ;
Vinoba, Mari ;
Jeong, Soon Kwan ;
Grace, Andrews Nirmala .
POWDER TECHNOLOGY, 2014, 252 :25-32
[25]  
Singh A. K., 2013, EUROPEAN CHEM B, V2, P518
[26]   Synthesis and formation mechanism of TiO2/Al2O3 nanobelts by electrospinning [J].
Song, Chao ;
Dong, Xiangting .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 87 (09) :1545-1549
[27]   Large-scale synthesis of CuS hexaplates in mixed solvents using a solvothermal method [J].
Thongtem, Titipun ;
Pilapong, Chalermchai ;
Thongtem, Somchai .
MATERIALS LETTERS, 2010, 64 (02) :111-114
[28]   Flexible Janus nanoribbons to help obtain simultaneous color-tunable enhanced photoluminescence, magnetism and electrical conduction trifunctionality [J].
Tian, Jiao ;
Ma, Qianli ;
Dong, Xiangting ;
Yu, Wensheng ;
Yang, Ming ;
Yang, Ying ;
Wang, Jinxian ;
Liu, Guixia .
RSC ADVANCES, 2016, 6 (42) :36180-36191
[29]   Flexible composite nanobelts: facile electrospinning construction, structure and color-tunable photoluminescence [J].
Tian, Jiao ;
Ma, Qianli ;
Dong, Xiangting ;
Yang, Ming ;
Yang, Ying ;
Wang, Jinxian ;
Yu, Wensheng ;
Liu, Guixia .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (11) :8413-8420
[30]   Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light [J].
Ung Thi Dieu Thuy ;
Nguyen Quang Liem ;
Parlett, Christopher M. A. ;
Lalev, Georgi M. ;
Wilson, Karen .
CATALYSIS COMMUNICATIONS, 2014, 44 :62-67