High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy

被引:25
作者
Cai, Hongbing [1 ,2 ,3 ]
Meng, Qushi [1 ,2 ]
Zhao, Hui [1 ,2 ]
Li, Mingling [4 ]
Dai, Yanmeng [5 ]
Lin, Yue [1 ,2 ]
Ding, Huaiyi [1 ,2 ]
Pan, Nan [1 ,2 ]
Tian, Yangchao [6 ]
Luo, Yi [1 ,2 ,3 ]
Wang, Xiaoping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, USTC Ctr Micro & Nanoscale Res & Fabricat, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[5] Shenzhen Univ, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[6] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230027, Anhui, Peoples R China
关键词
nanogaps; atomic layer deposition (ALD); colloidal lithography; lift-off; surface-enhanced Raman scattering (SERS); SUB-5 NM GAPS; RAMAN-SCATTERING; GOLD NANOPARTICLES; FIELD ENHANCEMENT; CAVITY ARRAYS; LITHOGRAPHY; GENERATION; ANTENNAS; ELECTRODES; UNIFORM;
D O I
10.1021/acsami.8b04810
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, highthroughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 X 10(6) and a detection limit of 10(-11) M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe2. Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.
引用
收藏
页码:20189 / 20195
页数:7
相关论文
共 45 条
[1]   Plasmonic Near-Field Localization of Silver Core-Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering [J].
Asapu, Ramesh ;
Ciocarlan, Radu-George ;
Claes, Nathalie ;
Blommaerts, Natan ;
Minjauw, Matthias ;
Ahmad, Tareq ;
Dendooven, Jolien ;
Cool, Pegie ;
Bals, Sara ;
Denys, Siegfried ;
Detavernier, Christophe ;
Lenaerts, Silvia ;
Verbruggen, Sammy W. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (47) :41577-41585
[2]   Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration [J].
Baumans, Xavier D. A. ;
Cerbu, Dorin ;
Adami, Obaid-Allah ;
Zharinov, Vyacheslav S. ;
Verellen, Niels ;
Papari, Gianpaolo ;
Scheerder, Jeroen E. ;
Zhang, Gufei ;
Moshchalkov, Victor V. ;
Silhanek, Alejandro V. ;
Van de Vondel, Joris .
NATURE COMMUNICATIONS, 2016, 7
[3]   Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography [J].
Beesley, David J. ;
Semple, James ;
Jagadamma, Lethy Krishnan ;
Amassian, Aram ;
McLachlan, Martyn A. ;
Anthopoulos, Thomas D. ;
deMello, John C. .
NATURE COMMUNICATIONS, 2014, 5
[4]   Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates [J].
Cai, Hongbing ;
Wu, Yukun ;
Dai, Yanmeng ;
Pan, Nan ;
Tian, Yangchao ;
Luo, Yi ;
Wang, Xiaoping .
OPTICS EXPRESS, 2016, 24 (18) :20808-20815
[5]  
Chen X., 2014, SCI REP, V4
[6]   Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing [J].
Chen, Xiaoshu ;
Lindquist, Nathan C. ;
Klemme, Daniel J. ;
Nagpal, Prashant ;
Norris, David J. ;
Oh, Sang-Hyun .
NANO LETTERS, 2016, 16 (12) :7849-7856
[7]   Nanogap-Enhanced Infrared Spectroscopy with Template-Stripped Wafer-Scale Arrays of Buried Plasmonic Cavities [J].
Chen, Xiaoshu ;
Ciraci, Cristian ;
Smith, David R. ;
Oh, Sang-Hyun .
NANO LETTERS, 2015, 15 (01) :107-113
[8]   Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves [J].
Chen, Xiaoshu ;
Park, Hyeong-Ryeol ;
Pelton, Matthew ;
Piao, Xianji ;
Lindquist, Nathan C. ;
Im, Hyungsoon ;
Kim, Yun Jung ;
Ahn, Jae Sung ;
Ahn, Kwang Jun ;
Park, Namkyoo ;
Kim, Dai-Sik ;
Oh, Sang-Hyun .
NATURE COMMUNICATIONS, 2013, 4
[9]   Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory [J].
Cui, Ajuan ;
Liu, Zhe ;
Dong, Huanli ;
Yang, Fangxu ;
Zhen, Yonggang ;
Li, Wuxia ;
Li, Junjie ;
Gu, Changzhi ;
Zhang, Xiaotao ;
Li, Rongjin ;
Hu, Wenping .
ADVANCED MATERIALS, 2016, 28 (37) :8227-8233
[10]   Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1-2 nm by Focused Ion Beam Milling [J].
Cui, Ajuan ;
Liu, Zhe ;
Dong, Huanli ;
Wang, Yujin ;
Zhen, Yonggang ;
Li, Wuxia ;
Li, Junjie ;
Gu, Changzhi ;
Hu, Wenping .
ADVANCED MATERIALS, 2015, 27 (19) :3002-3006