Decoupled ion mobility in nano-confined ionic plastic crystal

被引:4
|
作者
Zhu, Haijin [1 ,2 ]
Grzelak, Aleksandra [1 ,2 ]
Yunis, Ruhamah [3 ]
Martin, Jaime [4 ,5 ,6 ]
Forsyth, Maria [1 ,2 ,4 ,5 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] Deakin Univ, ARC Ctr Excellence Electromat Sci, 221 Burwood Highway, Burwood, Vic 3125, Australia
[3] Queensland Univ Technol, Sch Chem & Phys, Ctr Mat Sci, 2 George St, Brisbane, Qld 4000, Australia
[4] Univ Basque Country UPV EHU, POLYMAT, Fac Chem, Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country UPV EHU, Polymer Sci & Technol Dept, Fac Chem, Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
来源
MATERIALS ADVANCES | 2020年 / 1卷 / 09期
基金
澳大利亚研究理事会;
关键词
DIFFUSION-COEFFICIENT; PERFLUOROSULFONATE IONOMERS; ENHANCED CONDUCTIVITY; SELF-DIFFUSION; POROUS-MEDIA; STATE; TRANSPORT; BEHAVIOR; PROBE; ELECTROLYTES;
D O I
10.1039/d0ma00778a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoconfined ions have dramatically different local environments compared to the bulk, which profoundly affects the ion solvation and transport properties taking place in the confined space. Herein, we investigate the rotational and translation mobility of both cation and anions of an OIPC (diethyl)(methyl)(isobutyl)phosphonium hexafluorophosphate) confined in 40 and 180 nm straight-through Al2O3 pores. The results revealed that the nanoconfined OIPC exhibit 44 times higher ionic conductivity than the bulk material at 30 degrees C. This enhancement is attributed to both the reduced tortuosity and the increased population of mobile species. More interestingly, the Al2O3 nanochannels were found to selectively enhance the rotation and translational motion of [P-122i4] cation at elevated temperatures, whilst leaving that of the [PF6] anion less affected.
引用
收藏
页码:3398 / 3405
页数:8
相关论文
共 50 条
  • [41] Single crystal formation in micro/nano-confined domains by melt-mediated crystallization without seeds
    Pan, Heng
    Shou, Wan
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (22)
  • [42] Nano-confined ionic liquid [emim][PF6] between graphite sheets: A molecular dynamics study
    Salemi, Sirous
    Akbarzadeh, Hamed
    Abdollahzadeh, Somayeh
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 215 : 512 - 519
  • [43] Bioinspired hydrogel-based nanofluidic ionic diodes: nano-confined network tuning and ion transport regulation (vol 56, pg 8123, 2020)
    Zhu, Congcong
    Teng, Yunfei
    Xie, Ganhua
    Li, Pei
    Qian, Yongchao
    Niu, Bo
    Liu, Pei
    Chen, Weipeng
    Kong, Xiang-Yu
    Jiang, Lei
    Wen, Liping
    CHEMICAL COMMUNICATIONS, 2020, 56 (73) : 10767 - 10767
  • [44] Molecular dynamics simulations of the thermal degradation of nano-confined polypropylene
    Nyden, MR
    Gilman, JW
    COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 1997, 7 (3-4): : 191 - 198
  • [45] Structure and the dynamics of nano-confined water in the vicinity of functionalized graphene
    Karamzadeh, Narges
    Mozaffari, Farkhondeh
    FLUID PHASE EQUILIBRIA, 2018, 472 : 160 - 171
  • [46] Heterogeneous relaxation dynamics of nano-confined salol probed by DMA
    Schranz, W.
    Puica, M. R.
    Koppensteiner, J.
    Kabelka, H.
    Kityk, A. V.
    EPL, 2007, 79 (03)
  • [47] NMR and dielectric studies of nano-confined nematic liquid crystals
    Cramer, C
    Cramer, T
    Arndt, M
    Kremer, F
    Naji, L
    Stannarius, R
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1997, 303 : 209 - 217
  • [48] Molecular simulation of the structure and rheology of nano-confined fluids.
    Cummings, PT
    Cui, ST
    McCabe, C
    Cochran, HD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : C56 - C56
  • [49] Effect of temperature on the viscoelastic properties of nano-confined liquid mixtures
    Voitchovsky, Kislon
    NANOSCALE, 2016, 8 (40) : 17472 - 17482
  • [50] Position-dependent energy of molecules in nano-confined water
    Tombari, E
    Salvetti, G
    Ferrari, C
    Johari, GP
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (19) : 3407 - 3411