Machine Learning for Antimicrobial Resistance Prediction: Current Practice, Limitations, and Clinical Perspective

被引:57
作者
Kim, Jee In [1 ,2 ,8 ]
Maguire, Finlay [1 ,2 ,3 ,12 ,13 ]
Tsang, Kara K. [4 ]
Gouliouris, Theodore [5 ,6 ,7 ]
Peacock, Sharon J. [5 ]
McAllister, Tim A. [8 ]
McArthur, Andrew G. [9 ,10 ,11 ]
Beiko, Robert G. [1 ,2 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
[2] Dalhousie Univ, Inst Comparat Genom, Halifax, NS, Canada
[3] Dalhousie Univ, Dept Community Hlth & Epidmiol, Fac Med, Halifax, NS, Canada
[4] London Sch Hyg & Trop Med, London, England
[5] Univ Cambridge, Dept Med, Cambridge, England
[6] Publ Hlth England, Clin Microbiol & Publ Hlth Lab, Cambridge, England
[7] Cambridge Univ Hosp NHS Fdn Trust, Cambridge, England
[8] Agr & Agri Food Canada, Lethbridge Res & Dev Ctr, Lethbridge, AB, Canada
[9] McMaster Univ, David Braley Ctr Antibiot Discovery, Hamilton, ON, Canada
[10] McMaster Univ, DeGroote Inst Infect Dis Res, Hamilton, ON, Canada
[11] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[12] Shared Hosp Lab, Toronto, ON, Canada
[13] Sunnybrook Res Inst, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
关键词
antimicrobial resistance; machine learning; PROKARYOTIC GENOME ANNOTATION; SURVEILLANCE; OUTCOMES; POINTS; SYSTEM;
D O I
10.1128/cmr.00179-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR. Given the availability of data sets encompassing hundreds or thousands of pathogen genomes, machine learning (ML) is increasingly being used to predict resistance to different antibiotics in pathogens based on gene content and genome composition. A key objective of this work is to advocate for the incorporation of ML into front-line settings but also highlight the further refinements that are necessary to safely and confidently incorporate these methods. The question of what to predict is not trivial given the existence of different quantitative and qualitative laboratory measures of AMR. ML models typically treat genes as independent predictors, with no consideration of structural and functional linkages; they also may not be accurate when new mutational variants of known AMR genes emerge. Finally, to have the technology trusted by end users in public health settings, ML models need to be transparent and explainable to ensure that the basis for prediction is clear. We strongly advocate that the next set of AMR-ML studies should focus on the refinement of these limitations to be able to bridge the gap to diagnostic implementation. Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR.
引用
收藏
页数:22
相关论文
共 136 条
  • [81] MA KC, 2020, NAT COMMUN, V11
  • [82] Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data
    Macesic, Nenad
    Bear, Oliver J.
    Pe'er, Itsik
    Tatonetti, Nicholas P.
    Peleg, Anton Y.
    Uhlemann, Anne-Catrin
    [J]. MSYSTEMS, 2020, 5 (03)
  • [83] Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning
    Maguire, Finlay
    Rehman, Muhammad Attiq
    Carrillo, Catherine
    Diarra, Moussa S.
    Beiko, Robert G.
    [J]. MSYSTEMS, 2019, 4 (04)
  • [84] Large-scale assessment of antimicrobial resistance marker databases for genetic phenotype prediction: a systematic review
    Mahfouz, Norhan
    Ferreira, Ines
    Beisken, Stephan
    von Haeseler, Arndt
    Posch, Andreas E.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2020, 75 (11) : 3099 - 3108
  • [85] The set covering machine
    Marchand, M
    Shawe-Taylor, J
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 723 - 746
  • [86] Antimicrobial resistance surveillance in the genomic age
    McArthur, Andrew G.
    Tsang, Kara K.
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2017, 1388 (01) : 78 - 91
  • [87] Pfam: The protein families database in 2021
    Mistry, Jaina
    Chuguransky, Sara
    Williams, Lowri
    Qureshi, Matloob
    Salazar, Gustavo A.
    Sonnhammer, Erik L. L.
    Tosatto, Silvio C. E.
    Paladin, Lisanna
    Raj, Shriya
    Richardson, Lorna J.
    Finn, Robert D.
    Bateman, Alex
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D412 - D419
  • [88] Molnar C., 2022, Interpretable machine learning: a guide for making black box models explainable, V2nd edn
  • [89] Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data
    Moradigaravand, Danesh
    Palm, Martin
    Farewell, Anne
    Mustonen, Ville
    Warringer, Jonas
    Parts, Leopold
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
  • [90] Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
    Murray, Christopher J. L.
    Ikuta, Kevin Shunji
    Sharara, Fablina
    Swetschinski, Lucien
    Aguilar, Gisela Robles
    Gray, Authia
    Han, Chieh
    Bisignano, Catherine
    Rao, Puja
    Wool, Eve
    Johnson, Sarah C.
    Browne, Annie J.
    Chipeta, Michael Give
    Fell, Frederick
    Hackett, Sean
    Haines-Woodhouse, Georgina
    Hamadani, Bahar H. Kashef
    Kumaran, Emmanuelle A. P.
    McManigal, Barney
    Agarwal, Ramesh
    Akech, Samuel
    Albertson, Samuel
    Amuasi, John
    Andrews, Jason
    Aravkin, Aleskandr
    Ashley, Elizabeth
    Bailey, Freddie
    Baker, Stephen
    Basnyat, Buddha
    Bekker, Adrie
    Bender, Rose
    Bethou, Adhisivam
    Bielicki, Julia
    Boonkasidecha, Suppawat
    Bukosia, James
    Carvalheiro, Cristina
    Castaneda-Orjuela, Carlos
    Chansamouth, Vilada
    Chaurasia, Suman
    Chiurchiu, Sara
    Chowdhury, Fazle
    Cook, Aislinn J.
    Cooper, Ben
    Cressey, Tim R.
    Criollo-Mora, Elia
    Cunningham, Matthew
    Darboe, Saffiatou
    Day, Nicholas P. J.
    De Luca, Maia
    Dokova, Klara
    [J]. LANCET, 2022, 399 (10325) : 629 - 655