Machine Learning for Antimicrobial Resistance Prediction: Current Practice, Limitations, and Clinical Perspective

被引:57
作者
Kim, Jee In [1 ,2 ,8 ]
Maguire, Finlay [1 ,2 ,3 ,12 ,13 ]
Tsang, Kara K. [4 ]
Gouliouris, Theodore [5 ,6 ,7 ]
Peacock, Sharon J. [5 ]
McAllister, Tim A. [8 ]
McArthur, Andrew G. [9 ,10 ,11 ]
Beiko, Robert G. [1 ,2 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
[2] Dalhousie Univ, Inst Comparat Genom, Halifax, NS, Canada
[3] Dalhousie Univ, Dept Community Hlth & Epidmiol, Fac Med, Halifax, NS, Canada
[4] London Sch Hyg & Trop Med, London, England
[5] Univ Cambridge, Dept Med, Cambridge, England
[6] Publ Hlth England, Clin Microbiol & Publ Hlth Lab, Cambridge, England
[7] Cambridge Univ Hosp NHS Fdn Trust, Cambridge, England
[8] Agr & Agri Food Canada, Lethbridge Res & Dev Ctr, Lethbridge, AB, Canada
[9] McMaster Univ, David Braley Ctr Antibiot Discovery, Hamilton, ON, Canada
[10] McMaster Univ, DeGroote Inst Infect Dis Res, Hamilton, ON, Canada
[11] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[12] Shared Hosp Lab, Toronto, ON, Canada
[13] Sunnybrook Res Inst, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
关键词
antimicrobial resistance; machine learning; PROKARYOTIC GENOME ANNOTATION; SURVEILLANCE; OUTCOMES; POINTS; SYSTEM;
D O I
10.1128/cmr.00179-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR. Given the availability of data sets encompassing hundreds or thousands of pathogen genomes, machine learning (ML) is increasingly being used to predict resistance to different antibiotics in pathogens based on gene content and genome composition. A key objective of this work is to advocate for the incorporation of ML into front-line settings but also highlight the further refinements that are necessary to safely and confidently incorporate these methods. The question of what to predict is not trivial given the existence of different quantitative and qualitative laboratory measures of AMR. ML models typically treat genes as independent predictors, with no consideration of structural and functional linkages; they also may not be accurate when new mutational variants of known AMR genes emerge. Finally, to have the technology trusted by end users in public health settings, ML models need to be transparent and explainable to ensure that the basis for prediction is clear. We strongly advocate that the next set of AMR-ML studies should focus on the refinement of these limitations to be able to bridge the gap to diagnostic implementation. Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR.
引用
收藏
页数:22
相关论文
共 136 条
  • [1] Dissecting Vancomycin-Intermediate Resistance in Staphylococcus aureus Using Genome-Wide Association
    Alam, Md Tauqeer
    Petit, Robert A., III
    Crispell, Emily K.
    Thornton, Timothy A.
    Conneely, Karen N.
    Jiang, Yunxuan
    Satola, Sarah W.
    Read, Timothy D.
    [J]. GENOME BIOLOGY AND EVOLUTION, 2014, 6 (05): : 1174 - 1185
  • [2] CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
    Alcock, Brian P.
    Raphenya, Amogelang R.
    Lau, Tammy T. Y.
    Tsang, Kara K.
    Bouchard, Megane
    Edalatmand, Arman
    Huynh, William
    Nguyen, Anna-Lisa, V
    Cheng, Annie A.
    Liu, Sihan
    Min, Sally Y.
    Miroshnichenko, Anatoly
    Tran, Hiu-Ki
    Werfalli, Rafik E.
    Nasir, Jalees A.
    Oloni, Martins
    Speicher, David J.
    Florescu, Alexandra
    Singh, Bhavya
    Faltyn, Mateusz
    Hernandez-Koutoucheva, Anastasia
    Sharma, Arjun N.
    Bordeleau, Emily
    Pawlowski, Andrew C.
    Zubyk, Haley L.
    Dooley, Damion
    Griffiths, Emma
    Maguire, Finlay
    Winsor, Geoff L.
    Beiko, Robert G.
    Brinkman, Fiona S. L.
    Hsiao, William W. L.
    Domselaar, Gary, V
    McArthur, Andrew G.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D517 - D525
  • [3] Characterization and Transcriptome Analysis of Acinetobacter baumannii Persister Cells
    Alkasir, Rashad
    Ma, Yanan
    Liu, Fei
    Li, Jing
    Lv, Na
    Xue, Yong
    Hu, Yongfei
    Zhu, Baoli
    [J]. MICROBIAL DRUG RESISTANCE, 2018, 24 (10) : 1466 - 1474
  • [4] Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing
    Allix-Beguec, Caroline
    Arandjelovic, Irena
    Bi, Lijun
    Beckert, Patrick
    Bonnet, Maryline
    Bradley, Phelim
    Cabibbe, Andrea M.
    Cancino-Munoz, Irving
    Caulfield, Mark J.
    Chaiprasert, Angkana
    Cirillo, Daniela M.
    Clifton, David
    Comas, Inaki
    Crook, Derrick W.
    De Filippo, Maria R.
    de Neeling, Han
    Diel, Roland
    Drobniewski, Francis A.
    Faksri, Kiatichai
    Farhat, Maha R.
    Fleming, Joy
    Fowler, Philip
    Fowler, Tom A.
    Gao, Qian
    Gardy, Jennifer
    Gascoyne-Binzi, Deborah
    Gibertoni-Cruz, Ana-Luiza
    Gil-Brusola, Ana
    Golubchik, Tanya
    Gonzalo, Ximena
    Grandjean, Louis
    He, Guangxue
    Guthrie, Jennifer L.
    Hoosdally, Sarah
    Hunt, Martin
    Iqbal, Zamin
    Ismail, Nazir
    Johnston, James
    Khanzada, Faisal M.
    Khor, Chiea C.
    Kohl, Thomas A.
    Kong, Clare
    Lipworth, Sam
    Liu, Qingyun
    Maphalala, Gugu
    Martinez, Elena
    Mathys, Vanessa
    Merker, Matthias
    Miotto, Paolo
    Mistry, Nerges
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (15) : 1403 - 1415
  • [5] Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research
    Anahtar, Melis N.
    Yang, Jason H.
    Kanjilal, Sanjat
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2021, 59 (07)
  • [6] [Anonymous], 2015, GLOB ACT PLAN ANT RE, V10, P354, DOI DOI 10.1128/MICROBE.10.354.1
  • [7] PATRIC as a unique resource for studying antimicrobial resistance
    Antonopoulos, Dionysios A.
    Assaf, Rida
    Aziz, Ramy Karam
    Brettin, Thomas
    Bun, Christopher
    Conrad, Neal
    Davis, James J.
    Dietrich, Emily M.
    Disz, Terry
    Gerdes, Svetlana
    Kenyon, Ronald W.
    Machi, Dustin
    Mao, Chunhong
    Murphy-Olson, Daniel E.
    Nordberg, Eric K.
    Olsen, Gary J.
    Olson, Robert
    Overbeek, Ross
    Parrello, Bruce
    Pusch, Gordon D.
    Santerre, John
    Shukla, Maulik
    Stevens, Rick L.
    VanOeffelen, Margo
    Vonstein, Veronika
    Warren, Andrew S.
    Wattam, Alice R.
    Xia, Fangfang
    Yoo, Hyunseung
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) : 1094 - 1102
  • [8] Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkw1099, 10.1093/nar/gkh131]
  • [9] Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines
    Argimon, Silvia
    Masim, Melissa A. L.
    Gayeta, June M.
    Lagrada, Marietta L.
    Macaranas, Polle K., V
    Cohen, Victoria
    Limas, Marilyn T.
    Espiritu, Holly O.
    Palarca, Janziel C.
    Chilam, Jeremiah
    Jamoralin Jr, Manuel C.
    Villamin, Alfred S.
    Borlasa, Janice B.
    Olorosa, Agnettah M.
    Hernandez, Lara F. T.
    Boehme, Karis D.
    Jeffrey, Benjamin
    Abudahab, Khalil
    Hufano, Charmian M.
    Sia, Sonia B.
    Stelling, John
    Holden, Matthew T. G.
    Aanensen, David M.
    Carlos, Celia C.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Pathogen Genomics in Public Health
    Armstrong, Gregory L.
    MacCannell, Duncan R.
    Taylor, Jill
    Carleton, Heather A.
    Neuhaus, Elizabeth B.
    Bradbury, Richard S.
    Posey, James E.
    Gwinn, Marta
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (26) : 2569 - 2580