Broadband Finite-Difference Time-Domain Modeling of Plasmonic Organic Photovoltaics

被引:2
|
作者
Jung, Kyung-Young [1 ]
Yoon, Woo-Jun [2 ]
Park, Yong Bae [3 ]
Berger, Paul R. [2 ,4 ]
Teixeira, Fernando L. [2 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Seoul 133791, South Korea
[2] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[3] Ajou Univ, Dept Elect & Comp Engn, Suwon 441749, South Korea
[4] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
FDTD; organic photovoltaics; plasmonics; SOLAR-CELLS; WAVE-GUIDES; ABSORPTION; EQUATIONS; MEDIA;
D O I
10.4218/etrij.14.0113.0767
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We develop accurate finite-difference time-domain (FDTD) modeling of polymer bulk heterojunction solar cells containing Ag nanoparticles between the hole-transporting layer and the transparent conducting oxide-coated glass substrate in the wavelength range of 300 nm to 800 nm. The Drude dispersion modeling technique is used to model the frequency dispersion behavior of Ag nanoparticles, the hole-transporting layer, and indium tin oxide. The perfectly matched layer boundary condition is used for the top and bottom regions of the computational domain, and the periodic boundary condition is used for the lateral regions of the same domain. The developed FDTD modeling is employed to investigate the effect of geometrical parameters of Ag nanospheres on electromagnetic fields in devices. Although negative plasmonic effects are observed in the considered device, absorption enhancement can be achieved when favorable geometrical parameters are obtained.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 50 条
  • [1] Numerical Considerations for the Finite-Difference Time-Domain Modeling of Scattering by Plasmonic Nanocylinders
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 1576 - 1579
  • [2] The nonstandard finite-difference time-domain methodology for broadband calculations
    Cole, James B.
    Banerjee, Saswatee
    OPTICAL MODELING AND SYSTEM ALIGNMENT, 2019, 11103
  • [3] Finite-difference time-domain modeling of thin shields
    Feliziani, M
    Maradei, F
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 848 - 851
  • [4] FINITE-DIFFERENCE TIME-DOMAIN MODELING OF CURVED SURFACES
    JURGENS, TG
    TAFLOVE, A
    UMASHANKAR, K
    MOORE, TG
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (04) : 357 - 366
  • [5] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [6] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [7] Time-domain finite-difference modeling for attenuative anisotropic media
    Bai, Tong
    Tsvankin, Ilya
    GEOPHYSICS, 2016, 81 (02) : C69 - C77
  • [8] ELECTROMAGNETIC MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    DUCEAU, E
    RECHERCHE AEROSPATIALE, 1994, (05): : 301 - 317
  • [9] Modeling SPR sensors with the finite-difference time-domain method
    Christensen, D
    Fowers, D
    BIOSENSORS & BIOELECTRONICS, 1996, 11 (6-7): : 677 - 684
  • [10] On the Stability of the Finite-Difference Time-Domain Modeling of Lorentz Media
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (06) : 283 - 285