Piezoresistivity of thin film semiconductors with application to thin film silicon solar cells

被引:10
作者
Lange, D. [1 ,2 ]
Cabarrocas, P. Roca I. [2 ]
Triantafyllidis, N. [1 ]
Daineka, D. [2 ]
机构
[1] Ecole Polytech, Lab Mecan Solides, F-91128 Palaiseau, France
[2] Ecole Polytech, Lab Phys Interfaces & Couches Minces, F-91128 Palaiseau, France
关键词
Amorphous silicon; Microcrystalline silicon; Zinc oxide; ITO; Piezoresistivity; Flexible PV; MICROCRYSTALLINE SILICON; STRESS; STRAIN; POLYCRYSTALLINE; TRANSISTORS; INTERFACE; TRANSPORT; MOBILITY; PECVD;
D O I
10.1016/j.solmat.2015.09.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The influence of mechanical strain on the conductivity (piezoresistivity) of intrinsic and doped hydrogenated amorphous and microcrystalline silicon (a-Si:H and mu-Si:H) thin films as well as indium tin oxide and aluminum doped zinc oxide is examined under uniaxial tension and compression. The aim of this work is to characterize and model the influence of stress on thin film solar cells. The resistivity of intrinsic a-Si:H mu-Si:H and as well as that of n-type a-Si:H and mu-Si:H decreases with increasing tensile strain whereas it is increasing for both p-type materials. Both ITO and ZnO:Al show no significant change in resistivity with tensile strain until a critical strain value of roughly 0.5% that initiates fracture and introduces a non-reversible resistivity increase. Such irreversible changes occur for silicon layers at higher strains (1%). Silicon nitride buffer layers decrease the value of this critical strain. Tensile tests inside a scanning electron microscope demonstrate that such irreversible changes are related to crack formation when a certain tensile strain is exceeded. Analytical and numerical calculations are performed to estimate the influence of strain on the efficiency of p-i-n solar cells, which is roughly +/-0.3% for a biaxial strain of +/-1%. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 56 条
[1]   Piezoresistive properties of nanocrystalline silicon thin films deposited on plastic substrates by hot-wire chemical vapor deposition [J].
Alpuim, P. ;
Andrade, M. ;
Sencadas, V. ;
Ribeiro, M. ;
Filonovich, S. A. ;
Lanceros-Mendez, S. .
THIN SOLID FILMS, 2007, 515 (19) :7658-7661
[2]   Study of the piezoresistivity of doped nanocrystalline silicon thin films [J].
Alpuim, P. ;
Gaspar, J. ;
Gieschke, P. ;
Ehling, C. ;
Kistner, J. ;
Goncalves, N. J. ;
Vasilevskiy, M. I. ;
Paul, O. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
[3]   INFLUENCE OF UNIAXIAL STRESS ON INDIRECT ABSORPTION EDGE IN SILICON AND GERMANIUM [J].
BALSLEV, I .
PHYSICAL REVIEW, 1966, 143 (02) :636-&
[4]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[5]   ACOUSTIC DEFORMATION POTENTIALS AND HETEROSTRUCTURE BAND OFFSETS IN SEMICONDUCTORS [J].
CARDONA, M ;
CHRISTENSEN, NE .
PHYSICAL REVIEW B, 1987, 35 (12) :6182-6194
[6]   PC1D version 5: 32-bit solar cell modeling on personal computers [J].
Clugston, DA ;
Basore, PA .
CONFERENCE RECORD OF THE TWENTY SIXTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1997, 1997, :207-210
[7]   The Piezojunction Effect in Silicon Sensors and Circuits and its Relation to Piezoresistance [J].
Creemer, J. Fredrik ;
Fruett, Fabiano ;
Meijer, Gerard C. M. ;
French, Paddy J. .
IEEE SENSORS JOURNAL, 2001, 1 (02) :98-108
[8]   The piezojunction effect in bipolar transistors at moderate stress levels: a theoretical and experimental study [J].
Creemer, JF ;
French, PJ .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 82 (1-3) :181-185
[9]   Preparation and piezoresistive properties of reactively sputtered indium tin oxide thin films [J].
Dyer, SE ;
Gregory, OJ ;
Amons, PS ;
Slot, AB .
THIN SOLID FILMS, 1996, 288 (1-2) :279-286
[10]   Hole drift-mobility measurements in microcrystalline silicon [J].
Dylla, T ;
Finger, F ;
Schiff, EA .
APPLIED PHYSICS LETTERS, 2005, 87 (03)