Consistent linear and non-linear responses to invasive electrical brain stimulation across individuals and primate species with implanted electrodes

被引:32
作者
Basu, Ishita [1 ,2 ,3 ,4 ]
Robertson, Madeline M. [1 ,2 ]
Crocker, Britni [1 ]
Peled, Noam [6 ]
Farnes, Kara [1 ,2 ,5 ]
Vallejo-Lopez, Deborah I. [5 ]
Deng, Helen [1 ,2 ,6 ]
Thombs, Matthew [1 ,2 ,8 ]
Martinez-Rubio, Clarissa [1 ,2 ]
Cheng, Jennifer J. [1 ,2 ]
McDonald, Eric [1 ,2 ]
Dougherty, Darin D. [3 ,4 ]
Eskandar, Emad N. [1 ,2 ,8 ]
Widge, Alik S. [3 ,4 ,7 ,9 ]
Paulk, Angelique C. [1 ,2 ,5 ]
Cash, Sydney S. [5 ]
机构
[1] Massachusetts Gen Hosp, Dept Neurosurg, Nayef Al Rodhan Labs, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Dept Psychiat, Charlestown, MA 02129 USA
[4] Harvard Med Sch, Charlestown, MA 02129 USA
[5] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[6] MGH HST Martinos Ctr Biomed Imaging, Dept Radiol, Charlestown, MA 02129 USA
[7] MIT, Picower Inst Learning & Memory, Cambridge, MA 02124 USA
[8] Montefiore Med Ctr, Albert Einstein Coll Med, Dept Neurosurg, Bronx, NY 10467 USA
[9] Univ Minnesota, Dept Psychiat, Minneapolis, MN 55455 USA
关键词
Cingulate cortex; Frequency; Current; Local field potential; Neuromodulation; Intracranial; EVOKED-POTENTIALS; CINGULATE CORTEX; REGISTRATION; COMPONENT; ATLAS;
D O I
10.1016/j.brs.2019.03.007
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Electrical neuromodulation via implanted electrodes is used in treating numerous neurological disorders, yet our knowledge of how different brain regions respond to varying stimulation parameters is sparse. Objective/Hypothesis: We hypothesized that the neural response to electrical stimulation is both regionspecific and non-linearly related to amplitude and frequency. Methods: We examined evoked neural responses following 400 ms trains of 10-400 Hz electrical stimulation ranging from 0.1 to 10 mA. We stimulated electrodes implanted in cingulate cortex (dorsal anterior cingulate and rostral anterior cingulate) and subcortical regions (nucleus accumbens, amygdala) of nonhuman primates (NHP, N=4) and patients with intractable epilepsy (N= 15) being monitored via intracranial electrodes. Recordings were performed in prefrontal, subcortical, and temporal lobe locations. Results: In subcortical regions as well as dorsal and rostral anterior cingulate cortex, response waveforms depended non-linearly on frequency (Pearson's linear correlation r < 0.39), but linearly on current (r> 0.58). These relationships between location, and input-output characteristics were similar in homologous brain regions with average Pearson's linear correlation values r> 0.75 between species and linear correlation values between participants r> 0.75 across frequency and current values per brain region. Evoked waveforms could be described by three main principal components (PCs) which allowed us to successfully predict response waveforms across individuals and across frequencies using PC strengths as functions of current and frequency using brain region specific regression models. Conclusions: These results provide a framework for creation of an atlas of input-output relationships which could be used in the principled selection of stimulation parameters per brain region. (C) 2019 The Authors. Published by Elsevier Inc.
引用
收藏
页码:877 / 892
页数:16
相关论文
共 58 条
[1]  
[Anonymous], 2008, The rhesus monkey brain: In stereotaxic coordinates
[2]   Subthalamic nucleus deep brain stimulus evoked potentials:: Physiological and therapeutic implications [J].
Baker, KB ;
Montgomery, EB ;
Rezai, AR ;
Burgess, R ;
Lüders, HO .
MOVEMENT DISORDERS, 2002, 17 (05) :969-983
[3]   The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content [J].
Bakker, Rembrandt ;
Tiesinga, Paul ;
Kotter, Rolf .
NEUROINFORMATICS, 2015, 13 (03) :353-366
[4]   A neural mass model to predict electrical stimulation evoked responses in human and non-human primate brain [J].
Basu, Ishita ;
Crocker, Britni ;
Farnes, Kara ;
Robertson, Madeline M. ;
Paulk, Angelique C. ;
Vallejo, Deborah I. ;
Dougherty, Darin D. ;
Cash, Sydney S. ;
Eskandar, Emad N. ;
Kramer, Mark M. ;
Widge, Alik S. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (06)
[5]   Mechanisms of deep brain stimulation [J].
Benabid, AL ;
Benazzous, A ;
Pollak, P .
MOVEMENT DISORDERS, 2002, 17 :S73-S74
[6]   Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: A systematic review and exploratory meta-analysis [J].
Berlim, Marcelo T. ;
McGirr, Alexander ;
Van den Eynde, Frederique ;
Fleck, Marcelo P. A. ;
Giacobbe, Peter .
JOURNAL OF AFFECTIVE DISORDERS, 2014, 159 :31-38
[7]   Nucleus Accumbens Deep Brain Stimulation Decreases Ratings of Depression and Anxiety in Treatment-Resistant Depression [J].
Bewernick, Bettina H. ;
Hurlemann, Rene ;
Matusch, Andreas ;
Kayser, Sarah ;
Grubert, Christiane ;
Hadrysiewicz, Barbara ;
Axmacher, Nikolai ;
Lemke, Matthias ;
Cooper-Mahkorn, Deirdre ;
Cohen, Michael X. ;
Brockmann, Holger ;
Lenartz, Doris ;
Sturm, Volker ;
Schlaepfer, Thomas E. .
BIOLOGICAL PSYCHIATRY, 2010, 67 (02) :110-116
[8]   Deep Brain Stimulation in Psychiatry Mechanisms, Models, and Next-Generation Therapies [J].
Bilge, Mustafa Taha ;
Gosai, Aishwarya K. ;
Widge, Alik S. .
PSYCHIATRIC CLINICS OF NORTH AMERICA, 2018, 41 (03) :373-+
[9]   Deep brain stimulation of the anterior cingulate cortex: targeting the affective component of chronic pain [J].
Boccard, Sandra G. J. ;
Pereira, Erlick A. C. ;
Moir, Liz ;
Van Hartevelt, Tim J. ;
Kringelbach, Morten L. ;
FitzGerald, James J. ;
Baker, Ian W. ;
Green, Alexander L. ;
Aziz, Tipu Z. .
NEUROREPORT, 2014, 25 (02) :83-88
[10]   High and low frequency electrical stimulation in non-lesional temporal lobe epilepsy [J].
Boex, Colette ;
Vulliemoz, Serge ;
Spinelli, Laurent ;
Polio, Claudio ;
Seeck, Margitta .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2007, 16 (08) :664-669