MEAN CURVATURE FLOW WITHOUT SINGULARITIES

被引:0
|
作者
Saez, Mariel [1 ]
Schnurer, Oliver C. [2 ]
机构
[1] Dept Matemat, Santiago, Chile
[2] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
关键词
LEVEL SETS; 2-CONVEX HYPERSURFACES; EVOLUTION; MOTION; SPACE; STABILITY; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graphical mean curvature flow of complete solutions defined on subsets of Euclidean space. We obtain smooth long time existence. The projections of the evolving graphs also solve mean curvature flow. Hence this approach allows us to smoothly flow through singularities by studying graphical mean curvature flow in one additional dimension.
引用
收藏
页码:545 / 570
页数:26
相关论文
共 50 条
  • [31] A CLASS OF PARABOLIC EQUATIONS DRIVEN BY THE MEAN CURVATURE FLOW
    de Araujo, Anderson L. A.
    Montenegro, Marcelo
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 135 - 163
  • [32] Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow
    Julin, Vesa
    Niinikoski, Joonas
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (01)
  • [33] A general regularity theory for weak mean curvature flow
    Kasai, Kota
    Tonegawa, Yoshihiro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (1-2) : 1 - 68
  • [34] Mean Convex Mean Curvature Flow with Free Boundary
    Edelen, Nick
    Haslhofer, Robert
    Ivaki, Mohammad N.
    Zhu, Jonathan J.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (04) : 767 - 817
  • [35] The mean curvature flow in Minkowski spaces
    Zeng, Fanqi
    He, Qun
    Chen, Bin
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (10) : 1833 - 1850
  • [36] Lorentzian Legendrian mean curvature flow
    Schaefer, Lars
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 1093 - 1111
  • [37] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Alias, Luis J.
    de Lira, Jorge H.
    Rigoli, Marco
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1466 - 1529
  • [38] A local regularity theorem for mean curvature flow with triple edges
    Schulze, Felix
    White, Brian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 758 : 281 - 305
  • [39] A second derivative Holder estimate for weak mean curvature flow
    Tonegawa, Yoshihiro
    ADVANCES IN CALCULUS OF VARIATIONS, 2014, 7 (01) : 91 - 138
  • [40] Mean Curvature Flow in an Extended Ricci Flow Background
    Gomes, Jose N. V.
    Hudson, Matheus
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)