MEAN CURVATURE FLOW WITHOUT SINGULARITIES

被引:0
|
作者
Saez, Mariel [1 ]
Schnurer, Oliver C. [2 ]
机构
[1] Dept Matemat, Santiago, Chile
[2] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
关键词
LEVEL SETS; 2-CONVEX HYPERSURFACES; EVOLUTION; MOTION; SPACE; STABILITY; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graphical mean curvature flow of complete solutions defined on subsets of Euclidean space. We obtain smooth long time existence. The projections of the evolving graphs also solve mean curvature flow. Hence this approach allows us to smoothly flow through singularities by studying graphical mean curvature flow in one additional dimension.
引用
收藏
页码:545 / 570
页数:26
相关论文
共 50 条
  • [21] Identification of Surface Tension in Mean Curvature Flow
    Yang, Insoon
    Tomlin, Claire J.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3284 - 3289
  • [22] MINIMIZING MOVEMENTS FOR MEAN CURVATURE FLOW OF PARTITIONS
    Bellettini, Giovanni
    Kholmatov, Shokhrukh Yu.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 4117 - 4148
  • [23] Quantitative Stratification and the Regularity of Mean Curvature Flow
    Cheeger, Jeff
    Haslhofer, Robert
    Naber, Aaron
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (03) : 828 - 847
  • [24] Existence and Uniqueness for a Crystalline Mean Curvature Flow
    Chambolle, Antonin
    Morini, Massimiliano
    Ponsiglione, Marcello
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (06) : 1084 - 1114
  • [25] Self-Expanders of the Mean Curvature Flow
    Smoczyk, Knut
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (02) : 433 - 445
  • [26] Minimizing movements for forced anisotropic mean curvature flow of partitions with mobilities
    Bellettini, Giovanni
    Chambolle, Antonin
    Kholmatov, Shokhrukh
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (04) : 1135 - 1170
  • [27] Inverse mean curvature flow with forced term
    Liu, Yannan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 918 - 931
  • [28] Skew mean curvature flow
    Song, Chong
    Sun, Jun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [29] The Effective Dynamics of the Volume Preserving Mean Curvature Flow
    Chenn, Ilias
    Fournodavlos, G.
    Sigal, I. M.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) : 458 - 476
  • [30] On volume-preserving crystalline mean curvature flow
    Kim, Inwon
    Kwon, Dohyun
    Pozar, Norbert
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 733 - 774