Tempered fractional Brownian motion: Wavelet estimation, modeling and testing

被引:7
作者
Boniece, B. Cooper [1 ]
Didier, Gustavo [2 ]
Sabzikar, Farzad [3 ]
机构
[1] Washington Univ, Dept Math & Stat, 1 Brookings Dr, St Louis, MO 63105 USA
[2] Tulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USA
[3] Iowa State Univ, Dept Stat, 2438 Osborn Dr, Ames, IA 50011 USA
关键词
Fractional Brownian motion; Semi-long range dependence; Tempered fractional Brownian motion; Turbulence; Wavelets; LONG-RANGE DEPENDENCE; PARAMETER-ESTIMATION; STOCHASTIC-PROCESSES; MEMORY PARAMETER; REGRESSION; TRANSFORM; DIFFUSION; THEOREM;
D O I
10.1016/j.acha.2019.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Davenport spectrum is a modification of the classical Kolmogorov spectrum for the inertial range of turbulence that accounts for non-scaling low frequency behavior. Like the classical fractional Brownian motion vis-a-vis the Kolmogorov spectrum, tempered fractional Brownian motion (tfBm) is a new model that displays the Davenport spectrum. The autocorrelation of the increments of tfBm displays semilong range dependence (hyperbolic and quasi-exponential decays over moderate and large scales, respectively), a phenomenon that has been observed in a wide range of applications from wind speeds to geophysics to finance. In this paper, we use wavelets to construct the first estimation method for tfBm and a simple and computationally efficient test for fBm vs tfBm alternatives. The properties of the wavelet estimator and test are mathematically and computationally established. An application of the methodology shows that tfBm is a better model than fBm for a geophysical flow data set. (c) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:461 / 509
页数:49
相关论文
共 50 条
  • [41] TEMPERED FRACTIONAL MULTISTABLE MOTION AND TEMPERED MULTIFRACTIONAL STABLE MOTION
    Fan, Xiequan
    Vehel, Jacques Levy
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 37 - 67
  • [42] Asymptotic Properties of Parameter Estimators in Vasicek Model Driven by Tempered Fractional Brownian Motion
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Dehtiar, Olena
    AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (01) : 61 - 81
  • [43] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [44] Analysis and synthesis of two dimensional fractional Brownian motion based on wavelet
    Xia, M
    Bin, C
    Itsuya, M
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING I, 2002, : 201 - 204
  • [45] Tempered Fractional Stable Motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (02) : 681 - 706
  • [46] On fractional tempered stable motion
    Houdre, C.
    Kawai, R.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (08) : 1161 - 1184
  • [47] Tempered Fractional Stable Motion
    Mark M. Meerschaert
    Farzad Sabzikar
    Journal of Theoretical Probability, 2016, 29 : 681 - 706
  • [48] Linear systems with fractional Brownian motion and Gaussian noise
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (03) : 276 - 284
  • [49] Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations
    Ralchenko, Kostiantyn
    Yakovliev, Mykyta
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 1 - 29
  • [50] Alternative forms of fractional Brownian motion
    Marinucci, D
    Robinson, PM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 80 (1-2) : 111 - 122