Tempered fractional Brownian motion: Wavelet estimation, modeling and testing

被引:7
|
作者
Boniece, B. Cooper [1 ]
Didier, Gustavo [2 ]
Sabzikar, Farzad [3 ]
机构
[1] Washington Univ, Dept Math & Stat, 1 Brookings Dr, St Louis, MO 63105 USA
[2] Tulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USA
[3] Iowa State Univ, Dept Stat, 2438 Osborn Dr, Ames, IA 50011 USA
关键词
Fractional Brownian motion; Semi-long range dependence; Tempered fractional Brownian motion; Turbulence; Wavelets; LONG-RANGE DEPENDENCE; PARAMETER-ESTIMATION; STOCHASTIC-PROCESSES; MEMORY PARAMETER; REGRESSION; TRANSFORM; DIFFUSION; THEOREM;
D O I
10.1016/j.acha.2019.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Davenport spectrum is a modification of the classical Kolmogorov spectrum for the inertial range of turbulence that accounts for non-scaling low frequency behavior. Like the classical fractional Brownian motion vis-a-vis the Kolmogorov spectrum, tempered fractional Brownian motion (tfBm) is a new model that displays the Davenport spectrum. The autocorrelation of the increments of tfBm displays semilong range dependence (hyperbolic and quasi-exponential decays over moderate and large scales, respectively), a phenomenon that has been observed in a wide range of applications from wind speeds to geophysics to finance. In this paper, we use wavelets to construct the first estimation method for tfBm and a simple and computationally efficient test for fBm vs tfBm alternatives. The properties of the wavelet estimator and test are mathematically and computationally established. An application of the methodology shows that tfBm is a better model than fBm for a geophysical flow data set. (c) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:461 / 509
页数:49
相关论文
共 50 条
  • [31] Rate Optimality of Wavelet Series Approximations of Fractional Brownian Motion
    Antoine Ayache
    Murad S. Taqqu
    Journal of Fourier Analysis and Applications, 2003, 9 : 451 - 471
  • [32] On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    AUSTRIAN JOURNAL OF STATISTICS, 2014, 43 (03) : 217 - 228
  • [33] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [34] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [35] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [36] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [37] Estimation for translation of a process driven by fractional Brownian motion
    Rao, BLSP
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (06) : 1199 - 1212
  • [38] Simulation of Fractional Brownian Motion and Estimation of Hurst Parameter
    Pashko, Anatolii
    Sinyayska, Olga
    Oleshko, Tetiana
    15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 632 - 637
  • [39] Bayesian Sequential Estimation of a Drift of Fractional Brownian Motion
    Cetin, U.
    Novikov, A.
    Shiryaev, A. N.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 288 - 296
  • [40] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766