Tempered fractional Brownian motion: Wavelet estimation, modeling and testing

被引:7
|
作者
Boniece, B. Cooper [1 ]
Didier, Gustavo [2 ]
Sabzikar, Farzad [3 ]
机构
[1] Washington Univ, Dept Math & Stat, 1 Brookings Dr, St Louis, MO 63105 USA
[2] Tulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USA
[3] Iowa State Univ, Dept Stat, 2438 Osborn Dr, Ames, IA 50011 USA
关键词
Fractional Brownian motion; Semi-long range dependence; Tempered fractional Brownian motion; Turbulence; Wavelets; LONG-RANGE DEPENDENCE; PARAMETER-ESTIMATION; STOCHASTIC-PROCESSES; MEMORY PARAMETER; REGRESSION; TRANSFORM; DIFFUSION; THEOREM;
D O I
10.1016/j.acha.2019.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Davenport spectrum is a modification of the classical Kolmogorov spectrum for the inertial range of turbulence that accounts for non-scaling low frequency behavior. Like the classical fractional Brownian motion vis-a-vis the Kolmogorov spectrum, tempered fractional Brownian motion (tfBm) is a new model that displays the Davenport spectrum. The autocorrelation of the increments of tfBm displays semilong range dependence (hyperbolic and quasi-exponential decays over moderate and large scales, respectively), a phenomenon that has been observed in a wide range of applications from wind speeds to geophysics to finance. In this paper, we use wavelets to construct the first estimation method for tfBm and a simple and computationally efficient test for fBm vs tfBm alternatives. The properties of the wavelet estimator and test are mathematically and computationally established. An application of the methodology shows that tfBm is a better model than fBm for a geophysical flow data set. (c) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:461 / 509
页数:49
相关论文
共 50 条
  • [21] Tempered fractional Langevin-Brownian motion with inverse β-stable subordinator
    Chen, Yao
    Wang, Xudong
    Deng, Weihua
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (49)
  • [22] WAVELET ANALYSIS AND SYNTHESIS OF FRACTIONAL BROWNIAN-MOTION
    FLANDRIN, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 910 - 917
  • [23] Wavelet entropy and fractional Brownian motion time series
    Perez, D. G.
    Zunino, L.
    Garavaglia, M.
    Rosso, O. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 282 - 288
  • [24] On wavelet analysis of the nth order fractional Brownian motion
    Kortas, Hedi
    Dhifaoui, Zouhaier
    Ben Ammou, Samir
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (03): : 251 - 277
  • [25] Wavelet-based estimations in fractional Brownian motion
    D'Attellis, CE
    Hirchoren, GA
    LATIN AMERICAN APPLIED RESEARCH, 1999, 29 (3-4) : 221 - 225
  • [26] On wavelet analysis of the nth order fractional Brownian motion
    Hedi Kortas
    Zouhaier Dhifaoui
    Samir Ben Ammou
    Statistical Methods & Applications, 2012, 21 : 251 - 277
  • [27] Asymptotic behavior of weighted quadratic variation of tempered fractional Brownian motion
    Wang, Jixia
    Sun, Lu
    Miao, Yu
    STATISTICS & PROBABILITY LETTERS, 2024, 207
  • [28] Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion
    Chen, Yao
    Wang, Xudong
    Deng, Weihua
    JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (01) : 18 - 37
  • [29] Testing of fractional Brownian motion in a noisy environment
    Balcerek, Michal
    Burnecki, Krzysztof
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [30] Estimation in models driven by fractional Brownian motion
    Berzin, Corinne
    Leon, Jose R.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 191 - 213