Fast Image Reconstruction With L2-Regularization

被引:130
作者
Bilgic, Berkin [1 ,2 ]
Chatnuntawech, Itthi [1 ]
Fan, Audrey P. [1 ]
Setsompop, Kawin [2 ,3 ]
Cauley, Stephen F. [2 ]
Wald, Lawrence L. [2 ,3 ,4 ]
Adalsteinsson, Elfar [1 ,4 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Dept Radiol, AA Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Harvard Univ, Sch Med, Boston, MA USA
[4] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
regularization; susceptibility mapping; diffusion imaging; spectroscopic imaging; lipid suppression; BRAIN IRON; HIGH-FIELD; SUSCEPTIBILITY; MRI; REGULARIZATION; VALIDATION; INVERSION; MULTIPLE; MAP;
D O I
10.1002/jmri.24365
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods: We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; (i) Fast Quantitative Susceptibility Mapping (QSM), (ii) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and (iii) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results: The closed-form solution developed for regularized QSM allows processing of a three-dimensional volume under 5 s, the proposed lipid suppression algorithm takes under 1 s to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 s, all running in Matlab using a standard workstation. Conclusion: For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 37 条
  • [1] Abuhashem O, 2012, 20 ANN M INT SOC MAG, P3442
  • [2] Adalsteinsson E, 1999, MAGNET RESON MED, V42, P314, DOI 10.1002/(SICI)1522-2594(199908)42:2<314::AID-MRM14>3.0.CO
  • [3] 2-X
  • [4] Low-dimensional-Structure Self-Learning and Thresholding: Regularization Beyond Compressed Sensing for MRI Reconstruction
    Akcakaya, Mehmet
    Basha, Tamer A.
    Goddu, Beth
    Goepfert, Lois A.
    Kissinger, Kraig V.
    Tarokh, Vahid
    Manning, Warren J.
    Nezafat, Reza
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (03) : 756 - 767
  • [5] Lipid suppression in CSI with spatial priors and highly undersampled peripheral k-space
    Bilgic, Berkin
    Gagoski, Borjan
    Kok, Trina
    Adalsteinsson, Elfar
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (06) : 1501 - 1511
  • [6] Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries
    Bilgic, Berkin
    Setsompop, Kawin
    Cohen-Adad, Julien
    Yendiki, Anastasia
    Wald, Lawrence L.
    Adalsteinsson, Elfar
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) : 1747 - 1754
  • [7] MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
    Bilgic, Berkin
    Pfefferbaum, Adolf
    Rohlfing, Torsten
    Sullivan, Edith V.
    Adalsteinsson, Elfar
    [J]. NEUROIMAGE, 2012, 59 (03) : 2625 - 2635
  • [8] Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity
    Bodammer, N
    Kaufmann, J
    Kanowski, M
    Tempelmann, C
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 188 - 193
  • [9] SPATIAL LOCALIZATION IN NMR-SPECTROSCOPY INVIVO
    BOTTOMLEY, PA
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 508 : 333 - 348
  • [10] Quantitative Susceptibility Map Reconstruction from MR Phase Data Using Bayesian Regularization: Validation and Application to Brain Imaging
    de Rochefort, Ludovic
    Liu, Tian
    Kressler, Bryan
    Liu, Jing
    Spincemaille, Pascal
    Lebon, Vincent
    Wu, Jianlin
    Wang, Yi
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (01) : 194 - 206