Fast Image Reconstruction With L2-Regularization

被引:132
作者
Bilgic, Berkin [1 ,2 ]
Chatnuntawech, Itthi [1 ]
Fan, Audrey P. [1 ]
Setsompop, Kawin [2 ,3 ]
Cauley, Stephen F. [2 ]
Wald, Lawrence L. [2 ,3 ,4 ]
Adalsteinsson, Elfar [1 ,4 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Dept Radiol, AA Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Harvard Univ, Sch Med, Boston, MA USA
[4] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
regularization; susceptibility mapping; diffusion imaging; spectroscopic imaging; lipid suppression; BRAIN IRON; HIGH-FIELD; SUSCEPTIBILITY; MRI; REGULARIZATION; VALIDATION; INVERSION; MULTIPLE; MAP;
D O I
10.1002/jmri.24365
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods: We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; (i) Fast Quantitative Susceptibility Mapping (QSM), (ii) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and (iii) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results: The closed-form solution developed for regularized QSM allows processing of a three-dimensional volume under 5 s, the proposed lipid suppression algorithm takes under 1 s to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 s, all running in Matlab using a standard workstation. Conclusion: For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 37 条
[1]  
Abuhashem O, 2012, 20 ANN M INT SOC MAG, P3442
[2]  
Adalsteinsson E, 1999, MAGNET RESON MED, V42, P314, DOI 10.1002/(SICI)1522-2594(199908)42:2<314::AID-MRM14>3.0.CO
[3]  
2-X
[4]   Low-dimensional-Structure Self-Learning and Thresholding: Regularization Beyond Compressed Sensing for MRI Reconstruction [J].
Akcakaya, Mehmet ;
Basha, Tamer A. ;
Goddu, Beth ;
Goepfert, Lois A. ;
Kissinger, Kraig V. ;
Tarokh, Vahid ;
Manning, Warren J. ;
Nezafat, Reza .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (03) :756-767
[5]   Lipid suppression in CSI with spatial priors and highly undersampled peripheral k-space [J].
Bilgic, Berkin ;
Gagoski, Borjan ;
Kok, Trina ;
Adalsteinsson, Elfar .
MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (06) :1501-1511
[6]   Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries [J].
Bilgic, Berkin ;
Setsompop, Kawin ;
Cohen-Adad, Julien ;
Yendiki, Anastasia ;
Wald, Lawrence L. ;
Adalsteinsson, Elfar .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) :1747-1754
[7]   MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping [J].
Bilgic, Berkin ;
Pfefferbaum, Adolf ;
Rohlfing, Torsten ;
Sullivan, Edith V. ;
Adalsteinsson, Elfar .
NEUROIMAGE, 2012, 59 (03) :2625-2635
[8]   Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity [J].
Bodammer, N ;
Kaufmann, J ;
Kanowski, M ;
Tempelmann, C .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) :188-193
[9]   SPATIAL LOCALIZATION IN NMR-SPECTROSCOPY INVIVO [J].
BOTTOMLEY, PA .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 508 :333-348
[10]   Quantitative Susceptibility Map Reconstruction from MR Phase Data Using Bayesian Regularization: Validation and Application to Brain Imaging [J].
de Rochefort, Ludovic ;
Liu, Tian ;
Kressler, Bryan ;
Liu, Jing ;
Spincemaille, Pascal ;
Lebon, Vincent ;
Wu, Jianlin ;
Wang, Yi .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (01) :194-206