On global Lyapunov characterization of multi-stable nonlinear systems

被引:5
作者
Efimov, Denis [1 ]
机构
[1] Univ Liege, Syst & Control Syst & Modeling Dept Elect Engn &, B28, B-4000 Sart Tilman Par Liege, Belgium
来源
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009) | 2009年
关键词
MULTISTABILITY; STABILITY; INPUT;
D O I
10.1109/CDC.2009.5399944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new type of global stability is introduced and its equivalent Lyapunov characterization is presented. The problem of global stability of the compact set composed by all invariant solutions of a nonlinear system (several equilibriums, for instance) is analyzed. Consideration of such set allows us to present global stability properties for multi-stable systems.
引用
收藏
页码:6299 / 6304
页数:6
相关论文
共 25 条
[1]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[2]   Multi-stability in monotone input/output systems [J].
Angeli, D ;
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 2004, 51 (3-4) :185-202
[3]   An almost global notion of input-to-state stability [J].
Angeli, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (06) :866-874
[4]   Oscillations in I/O monotone systems under negative feedback [J].
Angeli, David ;
Sontag, Eduardo D. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 :166-176
[5]   Bistable biological systems:: A characterization through local compact input-to-state stability [J].
Chaves, Madalena ;
Eissing, Thomas ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (SPECIAL ISSUE) :87-100
[6]   Monotone systems under positive feedback: multistability and a reduction theorem [J].
Enciso, G ;
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 2005, 54 (02) :159-168
[7]  
Gelig A.K., 1978, Stability of nonlinear systems with nonunique equilibrium position
[8]  
Hahn W., 1967, STABILITY MOTION, V138
[9]  
Hayachi C., 1964, NONLINEAR OSCILLATIO
[10]  
Khalil H. K., 1992, Nonlinear Systems