A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe

被引:26
作者
Mah, Yee-Haur [1 ]
Jager, Rolf [1 ]
Kennard, Christopher [3 ]
Husain, Masud [1 ,2 ,3 ]
Nachev, Parashkev [1 ,2 ]
机构
[1] UCL, Inst Neurol, London WC1N 3BG, England
[2] UCL, Inst Cognit Neurosci, London WC1N 3BG, England
[3] Univ Oxford, Dept Clin Neurol, Oxford, England
基金
英国惠康基金;
关键词
Lesion segmentation; Diffusion-weighted imaging; Stroke; Zeta score; Magnetic resonance imaging; Occipital lobe; Lesion-mapping; COST FUNCTION MASKING; WHITE-MATTER LESIONS; SPATIAL NORMALIZATION; LIVE WIRE; MR-IMAGES; BRAINS; IDENTIFICATION; INTENSITY; FRAMEWORK; MODELS;
D O I
10.1016/j.cortex.2012.12.008
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Making robust inferences about the functional neuroanatomy of the brain is critically dependent on experimental techniques that examine the consequences of focal loss of brain function. Unfortunately, the use of the most comprehensive such technique-lesion-function-mapping is complicated by the need for time-consuming and subjective manual delineation of the lesions, greatly limiting the practicability of the approach. Here we exploit a recently-described general measure of statistical anomaly, zeta, to devise a fully-automated, high-dimensional algorithm for identifying the parameters of lesions within a brain image given a reference set of normal brain images. We proceed to evaluate such an algorithm in the context of diffusion-weighted imaging of the commonest type of lesion used in neuroanatomical research: ischaemic damage. Summary performance metrics exceed those previously published for diffusion-weighted imaging and approach the current gold standard-manual segmentation-sufficiently closely for fully-automated lesion-mapping studies to become a possibility. We apply the new method to 435 unselected images of patients with ischaemic stroke to derive a probabilistic map of the pattern of damage in lesions involving the occipital lobe, demonstrating the variation of anatomical resolvability of occipital areas so as to guide future lesion-function studies of the region. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 35 条
[1]   Probabilistic segmentation of white lesions in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
NEUROIMAGE, 2004, 21 (03) :1037-1044
[2]   Cost function masking during normalization of brains with focal lesions: Still a necessity? [J].
Andersen, Sarah M. ;
Rapcsak, Steven Z. ;
Beeson, Pelagie M. .
NEUROIMAGE, 2010, 53 (01) :78-84
[3]   Multimodal image coregistration and partitioning - A unified framework [J].
Ashburner, J ;
Friston, K .
NEUROIMAGE, 1997, 6 (03) :209-217
[4]  
Ashburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO
[5]  
2-G
[6]  
Barrett W A, 1997, Med Image Anal, V1, P331, DOI 10.1016/S1361-8415(97)85005-0
[7]  
Bergeest J.P., 2008, Bildverarbeitung fur die Medizin 2008, P36
[8]   Spatial normalization of brain images with focal lesions using cost function masking [J].
Brett, M ;
Leff, AP ;
Rorden, C ;
Ashburner, J .
NEUROIMAGE, 2001, 14 (02) :486-500
[9]   Color lesion boundary detection using live wire [J].
Chodorowski, A ;
Mattsson, U ;
Langille, M ;
Hamarneh, G .
MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 :1589-1596
[10]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+