A bionic solar-driven interfacial evaporation system with a photothermal-photocatalytic hydrogel for VOC removal during solar distillation

被引:66
|
作者
Mo, Huatao [1 ]
Wang, Ying [1 ]
机构
[1] Beijing Normal Univ, Key Lab Water & Sediment Sci, Minist Educ, Sch Environm, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Photothermal; Photocatalysis; Water evaporation; VOC removal; Bionic system; CLEAN WATER PRODUCTION; ENHANCEMENT; MXENE; TI3C2;
D O I
10.1016/j.watres.2022.119276
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar-driven interfacial evaporation is a breakthrough water treatment method because it harvests solar energy for producing clean water. However, evaporated volatile organic compounds (VOCs) in distilled water are the greatest barrier to this technology. Herein, a bionic solar-driven interfacial evaporation system integrating photothermal and photocatalysis technology was developed based on a new combined material TiO2/Ti3C2/C3N4/PVA (TTCP) hydrogel as an evaporator. Phenol-contaminated water, especially actual water (seawater, lake water and reclaimed water), is used to evaluate the water evaporation and VOC photocatalytic degradation performance. The results show that the evaporation rate of TTCP hydrogel was 1.54 kg m(-2) h(-1) under 1 kW m(-2), and the removal efficiency of phenol ranged from 69.4% to 100% at different concentrations (1-50 mg/L) in source water. Particularly, the capacity of the bionic evaporator was first evaluated for different types of actual water. Despite the initial TOC (38.12-57.93 mg/L) and total dissolved solids (TDS, 1.35 x 10(3)-8.78 x 10(4) mg/L) for seawater, lake water and reclaimed water being very different, the TDS was decreased by more than two orders of magnitude, below the US EPA drinking water standard (500 mg/L). The maximum TOC removal efficiency reached 80% under simulated sunlight (1 kW m(-2)), which is comparable to the efficiency of the ultrafiltration technique previously reported except for seawater. Furthermore, real sunlight (average solar irradiation similar to 0.82 kW m(-2)) was used to assess the practicability. The bionic evaporator can produce 0.72 kg m(-2) h(-1) of vapor from reclaimed water and run with steadily efficient TDS and TOC removals, reaching 99% and 74%, respectively. This technology, as a small, decentralized water treatment method, is a good choice for remote and off-grid areas.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bionic solar-Driven interfacial evaporator for synergistic photothermal-Photocatalytic activities and salt collection during desalination
    Yin, Min
    Xiao, Chaohu
    Jin, Yang
    He, Yanyu
    Zhang, Yuhan
    Chen, Lihua
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [2] An overview of photothermal materials for solar-driven interfacial evaporation
    Fang, Yiming
    Gao, Huimin
    Cheng, Kaiting
    Bai, Liang
    Li, Zhengtong
    Zhao, Yadong
    Xu, Xingtao
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [3] Strategies for enhancing the photothermal conversion efficiency of solar-driven interfacial evaporation
    Xiao, Yumeng
    Guo, Hongmin
    Li, Meng
    He, Jiasen
    Xu, Xin
    Liu, Sichen
    Wang, Lidong
    James, Tony D.
    COORDINATION CHEMISTRY REVIEWS, 2025, 527
  • [4] Biomass Hydrogel Solar-Driven Multifunctional Evaporator for Desalination, VOC Removal, and Sterilization
    An, Ning
    Ma, Mengyu
    Chen, Yi
    Wang, Zhining
    Li, Qian
    ACS ES&T ENGINEERING, 2024,
  • [5] Photothermal ZrN composite membranes for solar-driven water distillation
    AlMehrzi, Meera
    Shaheen, Alaa
    Ghazal, Aya
    Almarzooqi, Noora
    Raza, Aikifa
    Zhang, Tiejun
    Almarzooqi, Faisal
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [6] Mechanochemical synthesis and interfacial engineering of photothermal polymer composites for solar-driven water evaporation
    Kim, Jihyo
    Lee, Dongjun
    Cho, Wansu
    Yang, Beomjoo
    Jung, Jong Won
    Park, Chiyoung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (08) : 653 - 657
  • [7] Solar-driven interfacial evaporation: materials design and device assembly
    Balu, Satheesh kumar
    Cheng, Sijie
    Latthe, Sanjay S.
    Xing, Ruimin
    Liu, Shanhu
    ENERGY MATERIALS, 2024, 4 (02):
  • [8] Hydrodynamic solar-driven interfacial evaporation - Gone with the flow
    Ren, Jiawei
    Xu, Jia
    Tian, Shuangchao
    Shi, Ke
    Gu, Tianyu
    Zhao, Jiaheng
    Li, Xing
    Zhou, Zhiwei
    Tijing, Leonard
    Shon, Ho Kyong
    WATER RESEARCH, 2024, 266
  • [9] Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications
    Hou, Lanlan
    Li, Shuai
    Qi, Yingqun
    Liu, Jingchong
    Cui, Zhimin
    Liu, Xiaofei
    Zhang, Ying
    Wang, Nu
    Zhao, Yong
    ACS NANO, 2025, 19 (10) : 9636 - 9683
  • [10] Recent research advances in efficient solar-driven interfacial evaporation
    Zhou, Mingyu
    Zhang, Lijing
    Tao, Shengyang
    Li, Renyuan
    Wang, Yuchao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489