Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent

被引:207
作者
Moroz, Vitaly [1 ]
Van Schaftingen, Jean [2 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
关键词
Choquard equation; Hartree equation; nonlinear Schrodinger equation; nonlocal problem; Riesz potential; Hardy-Littlewood-Sobolev inequality; lower critical exponent; strict inequality; concentration-compactness; concentration at infinity; DECAY;
D O I
10.1142/S0219199715500054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlinear Choquard equation -Delta u + Vu = (I-alpha * vertical bar u vertical bar(alpha/N + 1))vertical bar u vertical bar(alpha/N - 1)u in R-N, where N >= 3, V is an element of L-infinity(R-N) is an external potential and I-alpha(x) is the Riesz potential of order alpha is an element of (0, N). The power alpha/N + 1 in the nonlocal part of the equation is critical with respect to the Hardy-Littlewood-Sobolev inequality. As a consequence, in the associated minimization problem a loss of compactness may occur. We prove that if lim inf(vertical bar x vertical bar ->infinity)(1 - V (x))vertical bar x vertical bar(2) > N-2(N-2)/4(N+1) then the equation has a nontrivial solution. We also discuss some necessary conditions for the existence of a solution. Our considerations are based on a concentration compactness argument and a nonlocal version of Brezis-Lieb lemma.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
Alexandrov A. S., 2010, SPRINGER SER SOLID-S, V159
[2]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[3]  
Cingolani S, 2013, DIFFER INTEGRAL EQU, V26, P867
[4]   Multiple solutions to a magnetic nonlinear Choquard equation [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02) :233-248
[5]   Semi-classical limit for Schrodinger equations with magnetic field and Hartree-type nonlinearities [J].
Cingolani, Silvia ;
Secchi, Simone ;
Squassina, Marco .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :973-1009
[6]   Positive and sign changing solutions to a nonlinear Choquard equation [J].
Clapp, Monica ;
Salazar, Dora .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :1-15
[7]   NEWTONIAN QUANTUM-GRAVITY [J].
JONES, KRW .
AUSTRALIAN JOURNAL OF PHYSICS, 1995, 48 (06) :1055-1081
[8]  
Lieb E.H., 2001, ANALYSIS, V14
[9]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[10]  
LIEB EH, 1977, STUD APPL MATH, V57, P93