A Fuel-Flexible Solid Oxide Fuel Cell Operating in Gradual Internal Reforming

被引:33
|
作者
Nobrega, Shayenne D. [1 ,3 ]
Gelin, Patrick [2 ]
Georges, Samuel [3 ]
Steil, Marlu C. [3 ]
Augusto, Bruno L. [4 ]
Noronha, Fabio B. [4 ]
Fonseca, Fabio C. [1 ]
机构
[1] IPEN, Inst Pesquisas Energet & Nucl, BR-05508000 Sao Paulo, Brazil
[2] Univ Lyon 1, CNRS, Inst Rech Catalyse & Environm Lyon, IRCELYON,UMR 5256, F-69626 Villeurbanne, France
[3] CNRS Grenoble INP UJF, Lab Electrochim & Physicochim Mat & Interfaces, UMR 5279, F-38402 St Martin Dheres, France
[4] INT, BR-20081312 Rio De Janeiro, RJ, Brazil
关键词
CATALYST LAYER; ETHANOL; METHANE; ANODE; OXIDATION; PERFORMANCE; HYDROGEN; SOFCS;
D O I
10.1149/2.107403jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
An electrolyte supported solid oxide fuel cell (SOFC) was continuously operated with hydrogen, methane, and bioethanol for nearly 400 hours without adding water, O-2, or CO2, and delivering a rather stable power output. Such a fuel-flexible SOFC was achieved by using both an anodic catalytic layer, which efficiently converts the primary fuel into hydrogen, and by the operation in gradual internal reforming conditions, which prevented degradation due to carbon formation. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:F354 / F359
页数:6
相关论文
共 50 条
  • [21] Implications for Using Biogas as a Fuel Source for Solid Oxide Fuel Cells: Internal Dry Reforming in a Small Tubular Solid Oxide Fuel Cell
    John Staniforth
    R. Mark Ormerod
    Catalysis Letters, 2002, 81 : 19 - 23
  • [22] Internal reforming development for solid oxide fuel cells
    Lee, A.L.
    Zabransky, R.F.
    Huber, W.J.
    Industrial and Engineering Chemistry Research, 1990, 29 (05): : 766 - 773
  • [23] Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells
    Lo Faro, Massimiliano
    Zignani, Sabrina Campagna
    Arico, Antonino Salvatore
    MATERIALS, 2020, 13 (14)
  • [24] Simulation of a Thin Film Solid Oxide Fuel Cell System Equipped with an Internal Fuel Reforming Unit
    Tsuda, Yuji
    Shinke, Norihisa
    Echigo, Mitsuaki
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2022, 55 (03) : 162 - 169
  • [25] Control strategy research of direct internal reforming solid oxide fuel cell
    Wang, Li-Jin
    Zhang, Hui-Sheng
    Weng, Shi-Lie
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2008, 28 (20): : 94 - 98
  • [26] Effect of methane slippage on an indirect internal reforming solid oxide fuel cell
    Aguiar, P
    Chadwick, D
    Kershenbaum, L
    CHEMICAL ENGINEERING SCIENCE, 2004, 59 (01) : 87 - 97
  • [27] Dynamic characteristics of a solid oxide fuel cell with direct internal reforming of methane
    Ho, Thinh X.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 113 : 44 - 51
  • [28] PERFORMANCE BEHAVIOR FOR BUTANE DIRECT INTERNAL REFORMING SOLID OXIDE FUEL CELL
    Park, Kwangjin
    Bae, Gyujong
    Bae, Joongmyeon
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 851 - 855
  • [29] Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell
    Diethelm, Stefan
    Van herle, Jan
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7355 - 7362
  • [30] Performance of an Anode Supported Solid Oxide fuel cell with Indirect Internal Reforming
    Park, S. T.
    Zou, J.
    Yoon, H. C.
    Sammes, N. M.
    Chung, J. S.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 377 - 379