Lipschitz factorization through subsets of Hilbert space

被引:7
作者
Chavez-Dominguez, Javier Alejandro [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Nonlinear Banach space theory; Euclidean distortion; Lipschitz factorization;
D O I
10.1016/j.jmaa.2014.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Euclidean distortion of a metric space, a measure of how well the metric space can be embedded into a Hilbert space, is currently an active interdisciplinary research topic. We study the corresponding notion for mappings instead of spaces, which is that of Lipschitz factorization through subsets of Hilbert space. The main theorems are two characterizations of when a mapping admits such a factorization, both of them inspired by results dealing with linear factorizations through Hilbert space. The first is a nonlinear version of a classical theorem of Kwapien in terms of "dominated" sequences of vectors, whereas the second is a duality result by means of a tensor-product approach. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 356
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 2002, GRAD TEXT M, DOI 10.1007/978-1-4613-0039-7
[2]  
Arens R.F., 1956, Pacific J. Math., V6, P397
[3]  
Arora S, 2008, J AM MATH SOC, V21, P1
[4]   The Euclidean Distortion of the Lamplighter Group [J].
Austin, Tim ;
Naor, Assaf ;
Valette, Alain .
DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) :55-74
[5]   Duality for Lipschitz p-summing operators [J].
Chavez-Dominguez, Javier Alejandro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (02) :387-407
[6]  
Diestel Joe, 1995, CAMBRIDGE STUD ADV M, V43
[7]   LIPSCHITZ p-SUMMING OPERATORS [J].
Farmer, Jeffrey D. ;
Johnson, William B. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) :2989-2995
[8]   Lipschitz-free Banach spaces [J].
Godefroy, G ;
Kalton, NJ .
STUDIA MATHEMATICA, 2003, 159 (01) :121-141
[9]  
Godefroy Gilles, 2014, ROCKY MOUNT IN PRESS
[10]  
Grothendieck A., 1953, Bol. Soc. Mat. Sao Paulo, V8, P1