Convolution with the linear canonical Hankel transformation

被引:9
作者
Kumar, Tanuj [1 ]
Prasad, Akhilesh [1 ]
机构
[1] Indian Sch Mines, Indian Inst Technol, Dept Appl Math, Dhanbad 826004, Bihar, India
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2019年 / 25卷 / 01期
关键词
Convolution; Linear canonical transformation; Linear time-invariant filter; Wavelets; Fredholm integral equation;
D O I
10.1007/s40590-017-0187-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce translation and convolution for linear canonical Hankel transformations and studied some inequalities. For the particular values of linear canonical Hankel transformation (i.e., for Hankel-Clifford transformation), we investigate linear time-invariant filters. Furthermore, some applications of linear canonical Hankel transformation to a generalized non-linear parabolic equation and a canonical convolution integral equation are given.
引用
收藏
页码:195 / 213
页数:19
相关论文
共 28 条
[1]  
[Anonymous], 1968, GEN INTEGRAL TRANSFO
[2]  
[Anonymous], P 15 SOLV C PHYS GOR
[3]   ABCD matrix formalism of fractional Fourier optics [J].
Bernardo, LM .
OPTICAL ENGINEERING, 1996, 35 (03) :732-740
[4]  
Boggess A., 2009, 1 COURSE WAVELETS FO
[5]   Recent developments in the theory of the fractional Fourier and linear canonical transforms [J].
Bultheel, A. ;
Martinez-Sulbaran, H. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (05) :971-1005
[8]  
Hirschman II., 1961, J. Anal. Math, V8, P307, DOI [10.1007/BF02786854, DOI 10.1007/BF02786854, DOI 10.1007/BF02786855]
[9]  
Koh E. L., 1994, INTEGRAL, V2, P279, DOI DOI 10.1080/10652469408819058
[10]  
KOH EL, 1995, PROC AM MATH SOC, V119, P153, DOI DOI 10.1090/S0002-9939-1993-1149972-7