A new quicker sequence convergent to Euler's constant

被引:22
作者
Lu, Dawei [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
关键词
Euler's constant; Rate of convergence; Asymptotic expansion;
D O I
10.1016/j.jnt.2013.10.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new quicker sequence convergent to Euler's constant is provided. Finally, for demonstrating the superiority of our new convergent sequence over De Temple's sequence, Vernescu's sequence and Mortici's sequences, some numerical computations are also given. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:320 / 329
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1999, GAZETA MAT A
[2]  
DeTemple D.W., 2006, Coll. Math. J., V37, P128
[3]   A QUICKER CONVERGENCE TO EULERS CONSTANT [J].
DETEMPLE, DW .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (05) :468-470
[4]  
Mortici C., 2007, MATH BALKANICA, V21, P301
[5]  
Mortici C., 2005, AN STIINT U OVIDIUS
[6]   A continued fraction approximation of the gamma function [J].
Mortici, Cristinel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) :405-410
[7]   A new Stirling series as continued fraction [J].
Mortici, Cristinel .
NUMERICAL ALGORITHMS, 2011, 56 (01) :17-26
[8]   Very accurate estimates of the polygamma functions [J].
Mortici, Cristinel .
ASYMPTOTIC ANALYSIS, 2010, 68 (03) :125-134
[9]   On new sequences converging towards the Euler-Mascheroni constant [J].
Mortici, Cristinel .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2610-2614
[10]  
Mortici C, 2010, CARPATHIAN J MATH, V26, P86