Visual properties of generalized Kloosterman sums

被引:3
作者
Burkhardt, Paula [2 ]
Chan, Alice Zhuo-Yu [1 ]
Currier, Gabriel [2 ]
Garcia, Stephan Ramon [2 ]
Luca, Florian [3 ]
Suh, Hong [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Pomona Coll, Dept Math, Claremont, CA 91711 USA
[3] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
基金
美国国家科学基金会;
关键词
Kloosterman sum; Gauss sum; Salie sum; Supercharacter; Hypocycloid; Uniform distribution; Equidistribution; Lucas number; Lucas prime; GRAPHIC NATURE; SUPERCHARACTERS;
D O I
10.1016/j.jnt.2015.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer m and a subgroup Lambda of the unit group (Z/mZ)(x), the corresponding generalized Kloosterrnan sum is the function K(a, b, m, Lambda) = Sigma(u is an element of Lambda) e(au+bu(-1)/m) for a, b is an element of Z/mZ. Unlike classical Kloosterman sums, which are real valued, generalized Kloosterman sums display a surprising array of visual features when their values are plotted in the complex plane. In a variety of instances, we identify the precise number-theoretic conditions that give rise to particular phenomena. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 15 条
[1]   Supercharacters, exponential sums, and the uncertainty principle [J].
Brumbaugh, J. L. ;
Bulkow, Madeleine ;
Fleming, Patrick S. ;
German, Luis Alberto Garcia ;
Garcia, Stephan Ramon ;
Karaali, Gizem ;
Michal, Matt ;
Turner, Andrew P. ;
Suh, Hong .
JOURNAL OF NUMBER THEORY, 2014, 144 :151-175
[2]   The Graphic Nature of the Symmetric Group [J].
Brumbaugh, J. L. ;
Bulkow, Madeleine ;
German, Luis Alberto Garcia ;
Garcia, Stephan Ramon ;
Michal, Matt ;
Turner, Andrew P. .
EXPERIMENTAL MATHEMATICS, 2013, 22 (04) :421-442
[3]  
Cooper B., 2007, THESIS
[4]  
Diaconis P, 2008, T AM MATH SOC, V360, P2359
[5]   THE GRAPHIC NATURE OF GAUSSIAN PERIODS [J].
Duke, William ;
Garcia, Stephan Ramon ;
Lutz, Bob .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (05) :1849-1863
[6]   Ramanujan sums as supercharacters [J].
Fowler, Christopher F. ;
Garcia, Stephan Ramon ;
Karaali, Gizem .
RAMANUJAN JOURNAL, 2014, 35 (02) :205-241
[7]  
Garcia Stephan Ramon, SUPERCHARACTER APPRO
[8]  
Garcia T. Hyde, 2015, Notices Amer. Math. Soc., V62, P878
[9]  
Iwaniec Henryk, 2004, AM MATH SOC C PUBL, V53
[10]   Mean eigenvalues for simple, simply connected, compact Lie groups [J].
Kaiser, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (49) :15287-15298