Pareto optimal multi-robot motion planning

被引:0
作者
Zhao, Guoxiang [1 ]
Zhu, Minghui [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
来源
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC) | 2018年
关键词
robotic motion planning; multi-robot coordination; Pareto optimality; RECEDING HORIZON CONTROL; THEORETIC CONTROLLER SYNTHESIS; ALGORITHMS; ROBOTS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies a class of multi-robot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others'. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Simulations show the anytime property and increasing optimality of the proposed algorithm.
引用
收藏
页码:4020 / 4025
页数:6
相关论文
共 35 条
[1]  
[Anonymous], 2008, OPTIMAL CONTROL VISC
[2]  
[Anonymous], 1979, ANN S FDN COMPUTER S, DOI DOI 10.1109/SFCS.1979.10
[3]  
[Anonymous], 2009, SET VALUED ANAL
[4]  
Aubin J. P., 2009, Viability theory, DOI 10.1007/978-0-8176-4910-4
[5]  
Aubin JP, 2011, VIABILITY THEORY: NEW DIRECTIONS, SECOND EDITION, P1, DOI 10.1007/978-3-642-16684-6
[6]  
Bardi M, 1998, ANN INT SOC DYN GAME, V4, P105
[7]  
Basar T., 1999, SIAM Classics in Applied Mathematics
[8]   FAST MOTION PLANNING FOR MULTIPLE MOVING ROBOTS [J].
BUCKLEY, SJ .
PROCEEDINGS - 1989 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOL 1-3, 1989, :322-326
[9]  
Bullo F, 2009, PRINC SER APPL MATH, P1
[10]  
Canny J., 1988, The complexity of robot motion planning.