Linear bounds for Calderon-Zygmund operators with even kernel on UMD spaces

被引:6
作者
Pott, Sandra [1 ]
Stoica, Andrei [1 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
关键词
Calderon-Zygmund operator; UMD space; Martingale transform; Bellman function; Dyadic Haar shift; Schur multiplier; WEIGHTED NORM INEQUALITIES;
D O I
10.1016/j.jfa.2013.09.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that several classical results about Calderon-Zygmund singular integral operators can be extended to X-valued functions if and only if the Banach space X has the UMD property. The dependence of the norm of an X-valued Calderon-Zygmund operator on the UMD constant of the space X is conjectured to be linear. We prove that this is indeed the case for sufficiently smooth Calderon-Zygmund operators with cancellation, associated to an even kernel. Our method uses the Bellman function technique to obtain the right estimates for the norm of dyadic Haar shift operators. We then apply the representation theorem of T. Hytonen to extend the result to general Calderon-Zygmund operators. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3303 / 3319
页数:17
相关论文
共 19 条
[11]  
Hytonen T., 2011, ARXIV11085119
[12]  
Hytonen T.P., 2007, ASPECTS PROBABILISTI
[13]   The sharp weighted bound for general Calderon-Zygmund operators [J].
Hytonen, Tuomas P. .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1473-1506
[14]   Pseudo-localization of singular integrals and noncommutative Calderon-Zygmund theory [J].
Parcet, Javier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (02) :509-593
[15]   The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic [J].
Petermichl, S. .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (05) :1355-1375
[16]  
Petermichl S, 2002, DUKE MATH J, V112, P281
[17]   GROTHENDIECK'S THEOREM, PAST AND PRESENT [J].
Pisier, Gilles .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 49 (02) :237-323
[18]  
Treil S., 2011, PREPRINT
[19]  
Wittwer J, 2000, MATH RES LETT, V7, P1