Lie Symmetry Analysis and Exact Solutions of Generalized Fractional Zakharov-Kuznetsov Equations

被引:23
作者
Li, Changzhao [1 ,2 ]
Zhang, Juan [3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Civil Engn & Mech, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650500, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Oxbridge Coll, Kunming 650106, Yunnan, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
lie symmetry analysis; fractional Zakharov-Kuznetsov equation; symmetry groups; exact solutions; CONSERVATION-LAWS; DIFFERENTIAL-EQUATIONS; ZK EQUATION; SOLITONS; WAVES;
D O I
10.3390/sym11050601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper considers the Lie symmetry analysis of a class of fractional Zakharov-Kuznetsov equations. We systematically show the procedure to obtain the Lie point symmetries for the equation. Accordingly, we study the vector fields of this equation. Meantime, the symmetry reductions of this equation are performed. Finally, by employing the obtained symmetry properties, we can get some new exact solutions to this fractional Zakharov-Kuznetsov equation.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation [J].
Adem, Abdullahi Rashid ;
Muatjetjeja, Ben .
APPLIED MATHEMATICS LETTERS, 2015, 48 :109-117
[2]   Exact solutions and conservation laws of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity [J].
Adem, Khadijo Rashid ;
Khalique, Chaudry Masood .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) :1692-1702
[3]  
Ali MN, 2018, PRAMANA-J PHYS, V91, DOI 10.1007/s12043-018-1614-1
[4]  
[Anonymous], 2013, LIFE SCI J
[5]  
[Anonymous], 2014, J EGYPTIAN MATH SOC, DOI [10.1016/j.joems.2013.11.004, DOI 10.1016/J.JOEMS.2013.11.004]
[6]   Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation [J].
Baleanu, Dumitru ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06) :861-876
[7]   Application of the homotopy perturbation method to Zakharov-Kuznetsov equations [J].
Biazar, J. ;
Badpeima, F. ;
Azimi, F. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) :2391-2394
[8]   COLLAPSING STATES OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS [J].
BLAHA, R ;
LAEDKE, EW ;
SPATSCHEK, KH .
PHYSICA D, 1989, 40 (02) :249-264
[9]   Lie group analysis method for two classes of fractional partial differential equations [J].
Chen, Cheng ;
Jiang, Yao-Lin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) :24-35
[10]   Variational approach, soliton solutions and singular solitons for new coupled ZK system [J].
Elboree, Mohammed K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) :934-941