Regional white matter volume differences in nondemented aging and Alzheimer's disease

被引:239
作者
Salat, David H. [1 ]
Greve, Douglas N.
Pacheco, Jennifer L.
Quinn, Brian T.
Helmer, Karl G.
Buckner, Randy L. [2 ,3 ]
Fischl, Bruce [4 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, MGH MIT HMS Athinoula Martinos Ctr Biomed Imaging, Charlestown, MA USA
[2] Harvard Univ, Dept Psychol, Ctr Brain Sci, Cambridge, MA 02138 USA
[3] Howard Hughes Med Inst, Chevy Chase, MD USA
[4] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
关键词
HUMAN CEREBRAL-CORTEX; AGE-RELATED-CHANGES; MILD COGNITIVE IMPAIRMENT; SURFACE-BASED ANALYSIS; BRAIN VOLUME; GRAY-MATTER; CORTICAL SURFACE; IN-VIVO; CEREBROVASCULAR-DISEASE; DEMENTIA SEVERITY;
D O I
10.1016/j.neuroimage.2008.10.030
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accumulating evidence suggests that altered cerebral white matter (WM) influences normal aging, and further that WM degeneration may modulate the clinical expression of Alzheimer's disease (AD). Here we conducted a study of differences in WM volume across the adult age span and in AD employing a newly developed, automated method for regional parcellation of the subcortical WM that uses curvature landmarks and gray matter (GM)/WM surface boundary information. This procedure measures the volume of gyral WM, utilizing a distance constraint to limit the measurements from extending into the centrum semiovale. Regional estimates were first established to be reliable across two scan sessions in 20 young healthy individuals. Next, the method was applied to a large clinically-characterized sample of 299 individuals including 73 normal older adults and 91 age-matched participants with very mild to mild AD. The majority of measured regions showed a decline in volume with increasing age, with strong effects found in bilateral fusiform, lateral orbitofrontal, superior frontal, medial orbital frontal, inferior temporal, and middle temporal WM. The association between WM volume and age was quadratic in many regions suggesting that WM volume loss accelerates in advanced aging. A number of WM regions were further reduced in AD with parahippocampal, entorhinal, inferior parietal and rostral middle frontal WM showing the strongest AD-associated reductions. There were minimal sex effects after correction for intracranial volume, and there were associations between ventricular volume and regional WM volumes in the older adults and AD that were not apparent in the younger adults. Certain results, such as the loss of WM in the fusiform region with aging, were unexpected and provide novel insight into patterns of age associated neural and cognitive decline. Overall, these results demonstrate the utility of automated regional WM measures in revealing the distinct patterns of age and AD associated volume loss that may contribute to cognitive decline. Published by Elsevier Inc.
引用
收藏
页码:1247 / 1258
页数:12
相关论文
共 95 条
[1]   THE EFFECT OF ADVANCED OLD-AGE ON THE NEURON CONTENT OF THE CEREBRAL-CORTEX - OBSERVATIONS WITH AN AUTOMATIC IMAGE ANALYZER POINT COUNTING METHOD [J].
ANDERSON, JM ;
HUBBARD, BM ;
COGHILL, GR ;
SLIDDERS, W .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1983, 58 (02) :235-246
[2]   Disruption of large-scale brain systems in advanced aging [J].
Andrews-Hanna, Jessica R. ;
Snyder, Abraham Z. ;
Vincent, Justin L. ;
Lustig, Cindy ;
Head, Denise ;
Raichle, Marcus E. ;
Buckner, Randy L. .
NEURON, 2007, 56 (05) :924-935
[3]  
Armstrong CL, 2004, AM J NEURORADIOL, V25, P977
[4]   White matter structural integrity in healthy aging adults and patients with Alzheimer disease - A magnetic resonance imaging study [J].
Bartzokis, G ;
Cummings, JL ;
Sultzer, D ;
Henderson, VW ;
Nuechterlein, KH ;
Mintz, J .
ARCHIVES OF NEUROLOGY, 2003, 60 (03) :393-398
[5]   Age-related changes in frontal and temporal lobe volumes in men - A magnetic resonance imaging study [J].
Bartzokis, G ;
Beckson, M ;
Lu, PH ;
Nuechterlein, KH ;
Edwards, N ;
Mintz, J .
ARCHIVES OF GENERAL PSYCHIATRY, 2001, 58 (05) :461-465
[6]   Clinicopathologic studies in cognitively healthy aging and Alzheimer disease - Relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype [J].
Berg, L ;
McKeel, DW ;
Miller, JP ;
Storandt, M ;
Rubin, EH ;
Morris, JC ;
Baty, J ;
Coats, M ;
Norton, J ;
Goate, AM ;
Price, JL ;
Gearing, M ;
Mirra, SS ;
Saunders, AM .
ARCHIVES OF NEUROLOGY, 1998, 55 (03) :326-335
[7]  
Bigler ED, 2002, AM J NEURORADIOL, V23, P255
[8]   White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging [J].
Bozzali, M ;
Falini, A ;
Franceschi, M ;
Cercignani, M ;
Zuffi, M ;
Scotti, G ;
Comi, G ;
Filippi, M .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2002, 72 (06) :742-746
[9]   CORTICAL AND SUBCORTICAL ARGYROPHILIC GRAINS CHARACTERIZE A DISEASE ASSOCIATED WITH ADULT ONSET DEMENTIA [J].
BRAAK, H ;
BRAAK, E .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1989, 15 (01) :13-26
[10]   Structural MRI covariance patterns associated with normal aging and neuropsychological functioning [J].
Brickman, Adam M. ;
Habeck, Christian ;
Zarahn, Eric ;
Flynn, Joseph ;
Stern, Yaakov .
NEUROBIOLOGY OF AGING, 2007, 28 (02) :284-295