Regular Bipartite Graphs Are Antimagic

被引:54
作者
Cranston, Daniel W. [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
antimagic graph labeling; bipartite graph; regular graph; graph decomposition; Marriage Theorem;
D O I
10.1002/jgt.20347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A labeling of a graph G is a bijection from E(G) to the set {1, 2, ... , vertical bar E(G)vertical bar}. A labeling is antimagic if for any distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every connected graph other than K-2 is antimagic. In this article, we show that every regular bipartite graph (with degree at least 2) is antimagic. Our technique relies heavily on the Marriage Theorem. (c) 2008 Wiley Periodicals Inc. J Graph Theory 60: 173-192, 2009
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [41] Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs
    Baranskii, V. A.
    Sen'chonok, T. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2023, 29 (01): : 24 - 35
  • [42] On the hyperbolicity of bipartite graphs and intersection graphs
    Coudert, David
    Ducoffe, Guillaume
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 187 - 195
  • [43] On endotype of bipartite graphs
    Li, Weimin
    ARS COMBINATORIA, 2013, 108 : 415 - 424
  • [44] On bipartite graphs with complete bipartite star complements
    Rowlinson, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 149 - 160
  • [45] Bipartite Graphs and Coverings
    Wang, Shiping
    Zhu, William
    Min, Fan
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2011, 6954 : 722 - +
  • [46] On the deficiency of bipartite graphs
    Giaro, K
    Kubale, M
    Malafiejski, M
    DISCRETE APPLIED MATHEMATICS, 1999, 94 (1-3) : 193 - 203
  • [47] Generalization of bipartite graphs
    Reddy, P. Siva Kota
    Hemavathi, P. S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (03) : 787 - 793
  • [48] Bipartite covering graphs
    Archdeacon, D
    Kwak, JH
    Lee, J
    Sohn, MY
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 51 - 63
  • [49] Equistarable bipartite graphs
    Boros, Endre
    Chiarelli, Nina
    Milanic, Martin
    DISCRETE MATHEMATICS, 2016, 339 (07) : 1960 - 1969
  • [50] On the determinant of bipartite graphs
    Bibak, Khodakhast
    DISCRETE MATHEMATICS, 2013, 313 (21) : 2446 - 2450