Hybrid Precoding for Millimeter Wave MIMO Systems: A Matrix Factorization Approach

被引:66
作者
Jin, Juening [1 ,2 ]
Zheng, Yahong Rosa [3 ]
Chen, Wen [4 ]
Xiao, Chengshan [5 ]
机构
[1] Missouri Univ Sci & Technol, Rolla, MO 65409 USA
[2] Shanghai Jiao Tong Univ, Dept Elect Engn, Network Coding & Transmiss Lab, Shanghai 200240, Peoples R China
[3] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
[4] Shanghai Jiao Tong Univ, Shanghai Key Lab Nav & Locat Based Serv, Shanghai 200240, Peoples R China
[5] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Hybrid precoding; finite-alphabet inputs; matrix factorization; nonconvex optimization; GAUSSIAN CHANNELS; DESIGN;
D O I
10.1109/TWC.2018.2810072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the hybrid precoding design for millimeter wave multiple-input multiple-output systems with finite-alphabet inputs. The precoding problem is a joint optimization of analog and digital precoders, and we treat it as a matrix factorization problem with power and constant modulus constraints. This paper presents three main contributions. First, we present a sufficient condition and a necessary condition for hybrid precoding schemes to realize unconstrained optimal precoders exactly when the number of data streams N-s satisfies N-s = min{rank( H), N-rf}, where H represents the channel matrix and N-rf is the number of radio frequency chains. Second, we show that the coupled power constraint in our matrix factorization problem can be removed without loss of optimality. Third, we propose a Broyden-Fletcher-Goldfarb-Shanno-based algorithm to solve our matrix factorization problem using gradient and Hessian information. Several numerical results are provided to show that our proposed algorithm outperforms existing hybrid precoding algorithms.
引用
收藏
页码:3327 / 3339
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 2015, ADV NEURAL INFORM PR
[2]  
[Anonymous], 2014, P 80 IEEE VEH TECHN, DOI DOI 10.1109/VTCFALL.2014.6966076
[3]  
Boyd L., 2004, CONVEX OPTIMIZATION
[4]  
Dauphin YN, 2014, ADV NEUR IN, V27
[5]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[6]   Mutual information and minimum mean-square error in Gaussian channels [J].
Guo, DN ;
Shamai, S ;
Verdú, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (04) :1261-1282
[7]   Complex-valued matrix differentiation: Techniques and key results [J].
Hjorungnes, Are ;
Gesbert, David .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (06) :2740-2746
[8]   Generalized Quadratic Matrix Programming: A Unified Framework for Linear Precoding With Arbitrary Input Distributions [J].
Jin, Juening ;
Zheng, Yahong Rosa ;
Chen, Wen ;
Xiao, Chengshan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (18) :4887-4901
[9]   Linear Precoding for Fading Cognitive Multiple-Access Wiretap Channel With Finite-Alphabet Inputs [J].
Jin, Juening ;
Xiao, Chengshan ;
Tao, Meixia ;
Chen, Wen .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (04) :3059-3070
[10]   A TRACE INEQUALITY FOR MATRIX PRODUCT [J].
LASSERRE, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (08) :1500-1501