Chains of semidualizing modules

被引:0
作者
Amanzadeh, Ensiyeh [1 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Bass number; semidualizing; suitable chain; Tor-independent; RING HOMOMORPHISMS; LOCAL RING; COMPLEXES; DIMENSION; GROWTH;
D O I
10.1142/S0219498818501189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (R, m, k) be a commutative Noetherian local ring. We study the suitable chains of semidualizing R-modules. We prove that when R is Artinian, the existence of a suitable chain of semidualizing modules of length n = max{i >= 0 | m(i) not equal 0} implies that the Poincare series of k and the Bass series of R have very specific forms. Also, in this case, we show that the Bass numbers of R are strictly increasing. This gives an insight into the question of Huneke about the Bass numbers of R.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] Amanzadeh E., MATH SCAND
  • [2] Ring homomorphisms and finite Gorenstein dimension
    Avramov, LL
    Foxby, HB
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 : 241 - 270
  • [3] RINGS THAT ARE HOMOLOGICALLY OF MINIMAL MULTIPLICITY
    Borna, Keivan
    Sather-Wagstaff, Sean
    Yassemi, Siamak
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) : 782 - 807
  • [4] Growth in the minimal injective resolution of a local ring
    Christensen, Lars Winther
    Striuli, Janet
    Veliche, Oana
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 24 - 44
  • [5] Semi-dualizing complexes and their Auslander categories
    Christensen, LW
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) : 1839 - 1883
  • [6] FOXBY HB, 1973, MATH SCAND, V31, P267
  • [7] Reflexivity and ring homomorphisms of finite flat dimension
    Frankild, Anders
    Sather-Wagstaff, Sean
    [J]. COMMUNICATIONS IN ALGEBRA, 2007, 35 (02) : 461 - 500
  • [8] On the structure of the set of semidualizing complexes
    Gerko, A
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) : 965 - 976
  • [9] Golod E. S., 1984, T MAT I STEKLOVA, V165, P62
  • [10] Hartshorne Robin, 1966, LECT NOTES MATH, V20