Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control

被引:16
作者
Ge, Zheng-Ming [1 ]
Yang, Cheng-Hsiung [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 300, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Grad Inst Automat & Control, Taipei 106, Taiwan
关键词
GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; UNCERTAIN PARAMETERS; FEEDBACK-CONTROL;
D O I
10.1016/j.chaos.2009.02.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the method of quadratic optimum control, a quadratic optimal regulator is used for synchronizing two complex chaotic systems in series form. By this method the least error with less control energy is achieved, and the optimization on both energy and error is realized synthetically. The simulation results of two Quantum-CNN chaos systems in series form prove the effectiveness of this method. Finally, chaotization of the system is given by optimal control. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:994 / 1002
页数:9
相关论文
共 30 条
[1]  
AWAD E, 2005, CHAOS SOLITON FRACT, V25, P1229
[2]  
Chen G., 1998, CHAOS ORDER METHODOL
[3]   ON FEEDBACK-CONTROL OF CHAOTIC CONTINUOUS-TIME SYSTEMS [J].
CHEN, GR ;
DONG, XN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (09) :591-601
[4]   On time-delayed feedback control of chaotic systems [J].
Chen, GR ;
Yu, XH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06) :767-772
[5]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[6]   The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems [J].
Ge, Zheng-Ming ;
Yang, Cheng-Hsiung .
CHAOS SOLITONS & FRACTALS, 2008, 35 (05) :980-990
[7]   Synchronization of complex chaotic systems in series expansion form [J].
Ge, Zheng-Ming ;
Yang, Cheng-Hsiung .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1649-1658
[8]   Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control [J].
Ge, Zheng-Ming ;
Yang, Cheng-Hsiung .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (02) :87-94
[9]   Chaos synchronization and parameter identification for loudspeaker systems [J].
Ge, ZM ;
Leu, WY .
CHAOS SOLITONS & FRACTALS, 2004, 21 (05) :1231-1247
[10]   Non-linear dynamics and chaos control of a physical pendulum with vibrating and rotating support [J].
Ge, ZM ;
Yang, CH ;
Chen, HH ;
Lee, SC .
JOURNAL OF SOUND AND VIBRATION, 2001, 242 (02) :247-264