Improved Outdoor Localization Based on Weighted Kullback-Leibler Divergence for Measurements Diagnosis

被引:5
作者
Al Hage, Joelle [1 ]
El Najjar, Maan El Badaoui [2 ]
机构
[1] Univ Technol Compiegne, Heudiasyc Lab, UMR 7253, CNRS, F-60200 Compiegne, France
[2] Univ Lille, CRIStAL Lab, UMR 9189, CNRS, F-59655 Villeneuve Dascq, France
关键词
Global navigation satellite system; Estimation; Satellites; Receivers; Fault detection; Information filters; Data integration;
D O I
10.1109/MITS.2018.2879165
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Global Navigation Satellite System (GNSS) is growing in usefulness for navigation in outdoor environment. However, the measurements from the satellites (pseudorange, Doppler) could be obscured or degraded due to different phenomena such as the multipath and interference. Therefore, in order to ensure the continuity and the integrity of localization, the fusion of these measurements with proprioceptive data is necessary. Adding also, the erroneous measurements should be detected and excluded from the fusion procedure.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 34 条
[1]   Multi-sensor fusion approach with fault detection and exclusion based on the Kullback-Leibler Divergence: Application on collaborative multi-robot system [J].
Al Hage, Joelle ;
El Najjar, Maan E. ;
Pomorski, Denis .
INFORMATION FUSION, 2017, 37 :61-76
[2]  
Andres S., 2012, THESIS
[3]  
Angrisano A., 2013, International Journal of Navigation and Observation, DOI 10.1155/2013/870365
[4]  
Angrisano A., 2010, Dottorato di ricerca (PhD) in Scienze Geodetiche e Topografiche Thesis, Universitadegli Studi di Napoli PARTHENOPE, Naple, pp 21
[5]  
[Anonymous], 2004, INTRO DECENTRALISED
[6]  
[Anonymous], 2007, THESIS
[7]  
[Anonymous], 2012, Distributed detection and data fusion
[8]  
Assimakis N., 2012, Int. J. Inform. Engin., V2, P1
[9]   Matrix nearness problems with Bregman divergences [J].
Dhillon, Inderjit S. ;
Tropp, Joel A. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (04) :1120-1146
[10]   Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models [J].
Do, MN .
IEEE SIGNAL PROCESSING LETTERS, 2003, 10 (04) :115-118