Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound

被引:110
作者
Wu, Kaizhi [1 ,3 ]
Chen, Xi [2 ]
Ding, Mingyue [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Life Sci & Technol, Dept Biomed Engn, Key Lab Image Proc & Intelligent Control,Educ Min, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Peoples R China
[3] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Peoples R China
来源
OPTIK | 2014年 / 125卷 / 15期
关键词
Deep learning; Contrast-enhanced ultrasound; Focal liver lesions; FACE DETECTION; DIAGNOSIS; CANCER; QUANTIFICATION; GUIDELINES; ALGORITHM; PROSTATE; BIOPSY;
D O I
10.1016/j.ijleo.2014.01.114
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Classification of liver masses is important to early diagnosis of patients. In this paper, a diagnostic system of liver disease classification based on contrast enhanced ultrasound (CEUS) imaging is proposed. In the proposed system, the dynamic CEUS videos of hepatic perfusion are firstly retrieved. Secondly, time intensity curves (TICs) are extracted from the dynamic CEUS videos using sparse non-negative matrix factorizations. Finally, deep learning is employed to classify benign and malignant focal liver lesions based on these TICs. Quantitative comparisons demonstrate that the proposed method outperforms the compared classification methods in accuracy, sensitivity and specificity. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4057 / 4063
页数:7
相关论文
共 47 条
[1]  
[Anonymous], P IEEE COMP SOC C CO
[2]  
[Anonymous], 2008, P 25 INT C MACH LEAR
[3]   Deep Machine Learning-A New Frontier in Artificial Intelligence Research [J].
Arel, Itamar ;
Rose, Derek C. ;
Karnowski, Thomas P. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) :13-18
[4]   THE USE OF PRINCIPAL COMPONENTS IN THE QUANTITATIVE-ANALYSIS OF GAMMA-CAMERA DYNAMIC STUDIES [J].
BARBER, DC .
PHYSICS IN MEDICINE AND BIOLOGY, 1980, 25 (02) :283-292
[5]   Focal liver lesions: contrast-enhanced ultrasound [J].
Bartolotta, Tommaso Vincenzo ;
Taibbi, Adele ;
Midiri, Massimo ;
Lagalla, Roberto .
ABDOMINAL IMAGING, 2009, 34 (02) :193-209
[6]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[7]   Circulating tumor cells versus imaging - Predicting overall survival in metastatic breast cancer [J].
Budd, G. Thomas ;
Cristofanilli, Massimo ;
Ellis, Mathew J. ;
Stopeck, Allison ;
Borden, Ernest ;
Miller, M. Craig ;
Matera, Jeri ;
Repollet, Madeline ;
Doyle, Gerald V. ;
Terstappen, Leon W. M. M. ;
Hayes, Daniel F. .
CLINICAL CANCER RESEARCH, 2006, 12 (21) :6403-6409
[8]  
Casey N. T., 2012, J VAC SCI TECHNOL B, V30
[9]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[10]  
Chen X., 2013, OPTIK