Defect-related light emission in the 1.4-1.7 μm range from Si layers at room temperature

被引:19
作者
Shklyaev, A. A. [1 ,2 ,3 ,4 ]
Nakamura, Y. [1 ,2 ]
Dultsev, F. N. [3 ]
Ichikawa, M. [1 ,2 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Quantum Phase Elect Ctr, Grad Sch Engn,Bunkyo Ku, Tokyo 1138656, Japan
[2] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[3] SB RAS, Inst Semicond Phys, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
carrier density; defect states; elemental semiconductors; germanium; photoluminescence; p-i-n diodes; semiconductor thin films; silicon; EMITTING DIODE; ELECTROLUMINESCENCE; GE; LUMINESCENCE; SURFACES; ERBIUM;
D O I
10.1063/1.3095670
中图分类号
O59 [应用物理学];
学科分类号
摘要
High density of crystal defects is formed in Si layers during their growth on the nanostructured surface composed of dense arrays of Ge islands grown on oxidized Si substrates. Although these defect-rich Si layers exhibit intense photoluminescence only at low temperatures, the forward-biased diodes with the Si layers located in the region of the p-i-n(+) junction can emit light at room temperature. The difference suggests that the influence of thermal emission of carriers from defect states on the light emission intensity is essentially reduced when the spatial distribution of carrier density is governed by the bias voltage and band bending. The results show that Si layers emitting light in the 1.4-1.7 mu m range at room temperature can be prepared by means of growth.
引用
收藏
页数:4
相关论文
共 31 条
  • [1] Point defect engineered Si sub-bandgap light-emitting diode
    Bao, Jiming
    Tabbal, Malek
    Kim, Taegon
    Charnvanichborikarn, Supakit
    Williams, James S.
    Aziz, Michael. J.
    Capasso, Federico
    [J]. OPTICS EXPRESS, 2007, 15 (11) : 6727 - 6733
  • [2] SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS
    CANHAM, LT
    [J]. APPLIED PHYSICS LETTERS, 1990, 57 (10) : 1046 - 1048
  • [3] Optical gain and stimulated emission in periodic nanopatterned crystalline silicon
    Cloutier, SG
    Kossyrev, PA
    Xu, J
    [J]. NATURE MATERIALS, 2005, 4 (12) : 887 - 891
  • [4] THE OPTICAL-PROPERTIES OF LUMINESCENCE-CENTERS IN SILICON
    DAVIES, G
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 176 (3-4): : 83 - 188
  • [5] DROZDOV NA, 1976, JETP LETT+, V23, P597
  • [6] Epitaxial growth of Ge on a thin SiO2 layer by ultrahigh vacuum chemical vapor deposition
    Halbwax, M.
    Renard, C.
    Cammilleri, D.
    Yam, V.
    Fossard, F.
    Bouchier, D.
    Zheng, Y.
    Rzepka, E.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2007, 308 (01) : 26 - 29
  • [7] Silicon-based visible light-emitting devices integrated into microelectronic circuits
    Hirschman, KD
    Tsybeskov, L
    Duttagupta, SP
    Fauchet, PM
    [J]. NATURE, 1996, 384 (6607) : 338 - 341
  • [8] Erbium in silicon
    Kenyon, AJ
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (12) : R65 - R84
  • [9] Silicon-based light emitters
    Kittler, M
    Reiche, M
    Arguirov, T
    Seifert, W
    Yu, X
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (04): : 802 - 809
  • [10] Kovalev D, 1999, PHYS STATUS SOLIDI B, V215, P871, DOI 10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO