Modulating the wnt signaling pathway with small molecules

被引:104
作者
Tran, Freddi Huan [1 ]
Zheng, Jie J. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Stein Eye Inst, Dept Ophthalmol, 100 Stein Plaza, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Mol Biol, 100 Stein Plaza, Los Angeles, CA 90095 USA
关键词
Wnt signaling pathway; small-molecule inhibitors; cancer; stem cells; Frizzled; Disheveled; GSK-3; beta; Axin; beta-catenin; T-cell factor/lymphoid enhancer-binding factor; Porcupine; and Tankyrase; DISHEVELLED PDZ DOMAIN; EMBRYONIC STEM-CELLS; INHIBITION; ACTIVATION; PROTEIN; CANCER; BINDING; GROWTH; IDENTIFICATION; PROLIFERATION;
D O I
10.1002/pro.3122
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Wnt signaling is a critical component during embryonic development and also plays an important role in regulating adult tissue homeostasis. Abnormal activation of Wnt signaling has been implicated in many cancers, while reduced activity of Wnt signaling leads to poor wound healing and structural formations. Thus, extensive efforts have been focused on developing small molecules that have potential to either inhibit or activate the pathway, hoping these molecules can offer leads for novel approaches in treating different human diseases. Many small-molecule inhibitors specifically target various elements, such as Frizzled, Disheveled, Porcupine, or Tankyrase, within the Wnt signaling pathways. These small molecules not only have the potential to be further developed as therapeutic reagents, but they may also be used as chemical probes to dissect the underlying mechanism of the Wnt signaling pathways. Therefore, their respective mechanisms and effective dosages are highly pertinent. Aiming to provide an overview of those molecules in a concise, easy-to-use manner, we summarize and organize the current research on them so that it may be helpful for utilization in different studies.
引用
收藏
页码:650 / 661
页数:12
相关论文
共 70 条
[1]  
[Anonymous], ONCOGENE
[2]   Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling [J].
Bafico, A ;
Gazit, A ;
Pramila, T ;
Finch, PW ;
Yaniv, A ;
Aaronson, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16180-16187
[3]   Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway [J].
Bergmann, Christina ;
Akhmetshina, Alfiya ;
Dees, Clara ;
Palumbo, Katrin ;
Zerr, Pawel ;
Beyer, Christian ;
Zwerina, Jochen ;
Distler, Oliver ;
Schett, Georg ;
Distler, Joerg H. W. .
ANNALS OF THE RHEUMATIC DISEASES, 2011, 70 (12) :2191-2198
[4]   Mutational Analysis of Sclerostin Shows Importance of the Flexible Loop and the Cystine-Knot for Wnt-Signaling Inhibition [J].
Boschert, Verena ;
van Dinther, Maarten ;
Weidauer, Stella ;
van Pee, Katharina ;
Muth, Eva-Maria ;
ten Dijke, Peter ;
Mueller, Thomas D. .
PLOS ONE, 2013, 8 (11)
[5]   Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling [J].
Callow, Marinella G. ;
Tran, Hoanh ;
Phu, Lilian ;
Lau, Ted ;
Lee, James ;
Sandoval, Wendy N. ;
Liu, Peter S. ;
Bheddah, Sheila ;
Tao, Janet ;
Lill, Jennie R. ;
Hongo, Jo-Anne ;
Davis, David ;
Kirkpatrick, Donald S. ;
Polakis, Paul ;
Costa, Mike .
PLOS ONE, 2011, 6 (07)
[6]   Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment [J].
Cheng, Yue ;
Phoon, Yee Peng ;
Jin, Xiwan ;
Chong, Shing Yee Steffi ;
Chok, Joseph ;
Ip, Yan ;
Wong, Bonnie Wing Yan ;
Lung, Maria Li .
ONCOTARGET, 2015, 6 (16) :14428-14439
[7]   Identification of small-molecule compounds targeting the dishevelled PDZ domain by virtual screening and binding studies [J].
Choi, Jiwon ;
Ma, SongLing ;
Kim, Hyun-Yi ;
Yun, Ji-Hye ;
Heo, Jung-Nyoung ;
Lee, Weontae ;
Choi, Kang-Yell ;
No, Kyoung Tai .
BIOORGANIC & MEDICINAL CHEMISTRY, 2016, 24 (15) :3259-3266
[8]   Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice [J].
Clément-Lacroix, P ;
Ai, MR ;
Morvan, F ;
Roman-Roman, S ;
Vayssière, B ;
Belleville, C ;
Estrera, K ;
Warman, ML ;
Baron, R ;
Rawadi, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (48) :17406-17411
[9]   The Poly(ADP-ribose) Polymerase Enzyme Tankyrase Antagonizes Activity of the β-Catenin Destruction Complex through ADP-ribosylation of Axin and APC2 [J].
Croy, Heather E. ;
Fuller, Caitlyn N. ;
Giannotti, Jemma ;
Robinson, Paige ;
Foley, Andrew V. A. ;
Yamulla, Robert J. ;
Cosgriff, Sean ;
Greaves, Bradford D. ;
von Kleeck, Ryan A. ;
An, Hyun Hyung ;
Powers, Catherine M. ;
Tran, Julie K. ;
Tocker, Aaron M. ;
Jacob, Kimberly D. ;
Davis, Beckley K. ;
Roberts, David M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (24) :12747-12760
[10]   An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid [J].
de la Roche, Marc ;
Rutherford, Trevor J. ;
Gupta, Deepti ;
Veprintsev, Dmitry B. ;
Saxty, Barbara ;
Freund, Stefan M. ;
Bienz, Mariann .
NATURE COMMUNICATIONS, 2012, 3