Nonrecurrence and Bell-like inequalities

被引:0
作者
Danforth, Douglas G. [1 ]
机构
[1] Greenwood Farm Technol LLC, 656 Lytton Ave,Apt C122, Palo Alto, CA 94301 USA
关键词
Bell; inequalities; nonrecurrent; variables; quantum; THEOREM;
D O I
10.1515/phys-2017-0089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The general class, A, of Bell hidden variables is composed of two subclasses A(R) and A(N) such that A(R) boolean OR A(N) = A and A(R) boolean OR A(N) = {}. The class A(N) is very large and contains random variables whose domain is the continuum, the reals. There are an uncountable infinite number of reals. Every instance of a real random variable is unique. The probability of two instances being equal is zero, exactly zero. A(N) induces sample independence. All correlations are context dependent but not in the usual sense. There is no "spooky action at a distance". Random variables, belonging to A(N), are independent from one experiment to the next. The existence of the class A(N) makes it impossible to derive any of the standard Bell inequalities used to define quantum entanglement.
引用
收藏
页码:762 / 768
页数:7
相关论文
共 9 条
[1]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[2]   BELLS THEOREM - EXPERIMENTAL TESTS AND IMPLICATIONS [J].
CLAUSER, JF ;
SHIMONY, A .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (12) :1881-1927
[3]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[4]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[5]  
Feller W., 1971, An Introduction to Probability Theory and Its Applications, VII
[6]   Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons [J].
Giustina, Marissa ;
Versteegh, Marijn A. M. ;
Wengerowsky, Soeren ;
Handsteiner, Johannes ;
Hochrainer, Armin ;
Phelan, Kevin ;
Steinlechner, Fabian ;
Kofler, Johannes ;
Larsson, Jan-Ake ;
Abellan, Carlos ;
Amaya, Waldimar ;
Pruneri, Valerio ;
Mitchell, Morgan W. ;
Beyer, Joern ;
Gerrits, Thomas ;
Lita, Adriana E. ;
Shalm, Lynden K. ;
Nam, Sae Woo ;
Scheidl, Thomas ;
Ursin, Rupert ;
Wittmann, Bernhard ;
Zeilinger, Anton .
PHYSICAL REVIEW LETTERS, 2015, 115 (25)
[7]   BELL THEOREM WITHOUT INEQUALITIES [J].
GREENBERGER, DM ;
HORNE, MA ;
SHIMONY, A ;
ZEILINGER, A .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (12) :1131-1143
[8]  
Plenio M. B., INTRO ENTANGLEMENT M
[9]  
Rudin W., 1964, Principles of mathematical analysis