A novel method for classification of multi-class motor imagery tasks based on feature fusion

被引:22
|
作者
Hou, Yimin [1 ]
Chen, Tao [1 ]
Lun, Xiangmin [1 ,2 ]
Wang, Fang [1 ]
机构
[1] Northeast Elect Power Univ, Sch Automat Engn, Jilin, Jilin, Peoples R China
[2] Changchun Univ Sci & Technol, Coll Mech & Elect Engn, Changchun, Peoples R China
关键词
Motor imagery based brain -computer interface; (MI-BCI); Electroencephalography (EEG); Feature extraction; Feature selection; SVM; EEG SIGNAL CLASSIFICATION;
D O I
10.1016/j.neures.2021.09.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motor imagery based brain computer interface (MI-BCI) has the advantage of strong independence that can rely on the spontaneous brain activity of the user to operate external devices. However, MI-BCI still has the problem of poor control effect, which requires more effective feature extraction algorithms and classification methods to extract distinctly separable features from electroencephalogram (EEG) signals. This paper proposes a novel framework based on Bispectrum, Entropy and common spatial pattern (BECSP). Here we use three methods of bispectrum in higher order spectra, entropy and CSP to extract MI-EEG signal features, and then select the most contributing features through tree-based feature selection algorithm. By comparing the classification results of SVM, Random Forest, Naive Bayes, LDA, KNN, Xgboost and Adaboost, we finally decide to use the SVM algorithm based on RBF kernel function which obtained the best result among them for classification. The proposed method is applied to the BCI competition IV data set 2a and BCI competition III data set IVa. On data set 2a, the highest accuracy on the evaluation data set reaches 85%. The experiment on data set IVa can also achieve good results. Compared with other algorithms that use the same data set, the performance of our algorithm has also been improved.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 50 条
  • [31] A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
    Baali, Hamaza
    Khorshidtalab, Aida
    Mesbah, Mostefa
    Salami, Momoh J. E.
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2015, 3
  • [32] Novel approach to multi-class classification
    Fang, Y
    Qi, FH
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (06) : 418 - 422
  • [33] Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
    Amin, Syed Umar
    Alsulaiman, Mansour
    Muhammad, Ghulam
    Mekhtiche, Mohamed Amine
    Hossain, M. Shamim
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 101 : 542 - 554
  • [34] Feature subset selection for multi-class SVM based image classification
    Wang, Lei
    COMPUTER VISION - ACCV 2007, PT II, PROCEEDINGS, 2007, 4844 : 145 - 154
  • [35] DWT and CNN based multi-class motor imagery electroencephalographic signal recognition
    Ma, Xunguang
    Wang, Dashuai
    Liu, Danhua
    Yang, Jimin
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
  • [36] A GMM-Based Feature Selection Algorithm for Multi-Class Classification
    Choi, Tacksung
    Moon, Sunkuk
    Park, Young-cheol
    Youn, Dae-hee
    Lee, Seokpil
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (08): : 1584 - 1587
  • [37] An algebraic multi-class classification method
    He, Q
    Liu, ZY
    Shi, ZZ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3307 - 3312
  • [38] Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets
    Shuqfa, Zaid
    Belkacem, Abdelkader Nasreddine
    Lakas, Abderrahmane
    SENSORS, 2023, 23 (11)
  • [39] A Novel Feature Fusion Approach for Classification of Motor Imagery EEG Based on Hierarchical Extreme Learning Machine
    Duan, Lijuan
    Lian, Zhaoyang
    Qiao, Yuanhua
    Chen, Juncheng
    Miao, Jun
    Li, Mingai
    COGNITIVE COMPUTATION, 2024, 16 (02) : 566 - 580
  • [40] A Novel Feature Fusion Approach for Classification of Motor Imagery EEG Based on Hierarchical Extreme Learning Machine
    Lijuan Duan
    Zhaoyang Lian
    Yuanhua Qiao
    Juncheng Chen
    Jun Miao
    Mingai Li
    Cognitive Computation, 2024, 16 : 566 - 580