Engineered Coatings via the Assembly of Amino-Quinone Networks

被引:47
作者
Zhong, Qi-Zhi [1 ,2 ]
Richardson, Joseph J. [2 ]
He, Ai [1 ]
Zheng, Tian [2 ]
Lafleur, Rene P. M. [2 ]
Li, Jianhua [2 ]
Qiu, Wen-Ze [1 ]
Furtado, Denzil [2 ]
Pan, Shuaijun [2 ]
Xu, Zhi-Kang [1 ]
Wan, Ling-Shu [1 ]
Caruso, Frank [2 ]
机构
[1] Zhejiang Univ, MOE Key Lab Macromol Synth & Functionalizat, Key Lab Adsorpt & Separat Mat & Technol Zhejiang, Dept Polymer Sci & Engn, Hangzhou 310027, Peoples R China
[2] Univ Melbourne, ARC Ctr Excellence Convergent Bionano Sci & Techn, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会; 中国国家自然科学基金;
关键词
nanostructures; quinones; self-assembly; surface modification; thin films; COMPLEXES; POLYMERS; NANOMECHANICS; CHEMISTRY; ADHESION; JUGLONE;
D O I
10.1002/anie.202010931
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineering coatings with precise physicochemical properties allows for control over the interface of a material and its interactions with the surrounding environment. However, assembling coatings with well-defined properties on different material classes remains a challenge. Herein, we report a co-assembly strategy to precisely control the structure and properties (e.g., thickness, adhesion, wettability, and zeta potential) of coatings on various materials (27 substrates examined) using quinone and polyamine building blocks. By increasing the length of the amine building blocks from small molecule diamines to branched amine polymers, we tune the properties of the films, including the thickness (from ca. 5 to ca. 50 nm), interfacial adhesion (0.05 to 5.54 nN), water contact angle (130 to 40 degrees), and zeta potential (-42 to 28 mV). The films can be post-functionalized through the in situ formation of diverse nanostructures, including nanoparticles, nanorods, and nanocrystals. Our approach provides a platform for the rational design of engineered, substrate-independent coatings for various applications.
引用
收藏
页码:2346 / 2354
页数:9
相关论文
共 57 条
[1]   Emerging opportunities for nanotechnology to enhance water security [J].
Alvarez, Pedro J. J. ;
Chan, Candace K. ;
Elimelech, Menachem ;
Halas, Naomi J. ;
Villagan, Dino .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :634-641
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P1728
[3]   Probing the critical nucleus size for ice formation with graphene oxide nanosheets [J].
Bai, Guoying ;
Gao, Dong ;
Liu, Zhang ;
Zhou, Xin ;
Wang, Jianjun .
NATURE, 2019, 576 (7787) :437-+
[4]   Excited state intramolecular proton transfer in hydroxyanthraquinones: Toward predicting fading of organic red colorants in art [J].
Berenbeim, J. A. ;
Boldissar, S. ;
Owens, S. ;
Haggmark, M. R. ;
Gate, G. ;
Siouri, F. M. ;
Cohen, T. ;
Rode, M. F. ;
Patterson, C. Schmidt ;
de Vries, M. S. .
SCIENCE ADVANCES, 2019, 5 (09)
[5]   Tailored multifunctional micellar brushes via crystallization-driven growth from a surface [J].
Cai, Jiandong ;
Li, Chen ;
Kong, Na ;
Lu, Yi ;
Lin, Geyu ;
Wang, Xinyan ;
Yao, Yuan ;
Manners, Ian ;
Qiu, Huibin .
SCIENCE, 2019, 366 (6469) :1095-+
[6]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[7]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[8]   One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering [J].
Ejima, Hirotaka ;
Richardson, Joseph J. ;
Liang, Kang ;
Best, James P. ;
van Koeverden, Martin P. ;
Such, Georgina K. ;
Cui, Jiwei ;
Caruso, Frank .
SCIENCE, 2013, 341 (6142) :154-157
[9]   Adaptable and Reprogrammable Surfaces [J].
Goldmann, Anja S. ;
Boase, Nathan R. B. ;
Michalek, Lukas ;
Blinco, James P. ;
Welle, Alexander ;
Barner-Kowollik, Christopher .
ADVANCED MATERIALS, 2019, 31 (40)
[10]  
Guo JL, 2016, NAT NANOTECHNOL, V11, P1105, DOI [10.1038/nnano.2016.172, 10.1038/NNANO.2016.172]