Semi-balanced colorings of graphs: Generalized 2-colorings based on a relaxed discrepancy condition

被引:2
作者
Jansson, J
Tokuyama, T
机构
[1] Lund Univ, Dept Comp Sci, S-22100 Lund, Sweden
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
关键词
Connected Graph; Combinatorial Investigation; Relaxed Discrepancy;
D O I
10.1007/s00373-004-0557-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the concept of a 2-coloring of a graph to what we call a semi-balanced coloring by relaxing a certain discrepancy condition on the shortest-paths hypergraph of the graph. Let G be an undirected, unweighted, connected graph with n vertices and m edges. We prove that the number of different semi-balanced colorings of G is: (1) at most n+1 if G is bipartite; (2) at most m if G is non-bipartite and triangle-free; and (3) at most m+1 if G is non-bipartite. Based on the above combinatorial investigation, we design an algorithm to enumerate all semi-balanced colorings of G in O(nm(2)) time.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 13 条
[1]  
Asano T, 2002, SIAM PROC S, P896
[2]  
Asano T., 2000, Nordic Journal of Computing, V7, P241
[3]  
ASANO T, UNPUB NUMBER GLOBAL
[4]  
Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[5]  
BECK J, 1995, HDB COMBINATORICS, V2, P1405
[6]  
Doerr B, 2001, SIAM PROC S, P119
[7]   APPROXIMATING THE MINIMUM MAXIMAL INDEPENDENCE NUMBER [J].
HALLDORSSON, MM .
INFORMATION PROCESSING LETTERS, 1993, 46 (04) :169-172
[8]   Clique is hard to approximate within n1-ε [J].
Håstad, J .
ACTA MATHEMATICA, 1999, 182 (01) :105-142
[9]  
MATOUSEK J, 1999, ALGORITHMS COMB, V18
[10]  
NIEDERREITER H, 1992, CBMS NSF REG C SER A, V63