Products of Hankel and Toeplitz operators on the Bergman space

被引:67
作者
Stroethoff, K [1 ]
Zheng, DC
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.1999.3489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question for which square integrable analytic functions f and g on the unit disk the densely defined products TfTg are bounded on the Bergman space. We prove results analogous to those obtained by the second author [17] for such Toeplitz products on the Hardy space. We furthermore obtain similar results for Hankel products HfHg*. where f and g are square integrable on the unit dish, and for the mixed Haplitz products HfTg and TgHf*, where f and g are square integrable on the unit disk and g is analytic. (C) 1999 Academic Press.
引用
收藏
页码:289 / 313
页数:25
相关论文
共 18 条
[1]  
Axler S, 1998, INDIANA U MATH J, V47, P387
[2]  
Axler S, 1998, STUD MATH, V127, P113
[3]  
Axler S., 1988, Pitman Res. NotesMath. Ser., V171, P1
[4]  
AXLER S, 1978, INTEGR EQUAT OPER TH, V1, P285
[5]  
Berezin FA., 1972, Izv. Akad. Nauk SSSR Ser. Mat, V6, P1117, DOI 10.1070/IM1972v006n05ABEH001913
[6]   THE INVERTIBILITY OF THE PRODUCT OF UNBOUNDED TOEPLITZ-OPERATORS [J].
CRUZURIBE, D .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 20 (02) :231-237
[7]  
Garnett JB., 2007, Bounded Analytic Functions
[8]   BOUNDED ANALYTIC FUNCTIONS AND GLEASON PARTS [J].
HOFFMAN, K .
ANNALS OF MATHEMATICS, 1967, 86 (01) :74-&
[9]  
LUECKING DH, 1992, J FUNCT ANAL, V110, P274
[10]   A DECOMPOSITION THEOREM FOR BMO AND APPLICATIONS [J].
ROCHBERG, R ;
SEMMES, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 67 (02) :228-263