Experimental measurement of collective nonlinear entanglement witness for two qubits

被引:17
作者
Lemr, Karel [1 ,2 ]
Bartkiewicz, Karol [1 ,2 ,3 ]
Cernoch, Antonin [4 ]
机构
[1] Palacky Univ, Joint Lab Opt, RCPTM, 17 Listopadu 12, Olomouc 77146, Czech Republic
[2] Acad Sci Czech Republic, Inst Phys, 17 Listopadu 12, Olomouc 77146, Czech Republic
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[4] Acad Sci Czech Republic, Inst Phys, Joint Lab Opt PU & IP AS CR, 17 Listopadu 50A, Olomouc 77207, Czech Republic
关键词
PHOTONS;
D O I
10.1103/PhysRevA.94.052334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a proof-of-principle experiment demonstrating measurement of the collectibility, a nonlinear entanglement witness proposed by L. Rudnicki et al. [Phys. Rev. Lett. 107, 150502 ( 2011)]. This entanglement witness works for both mixed and pure two-qubit states. In the latter case it can be used to measure entanglement in terms of the negativity. We measured the collectibility for three distinct classes of photonic polarization-encoded two-qubit states, i.e., maximally entangled, separable, and maximally mixed states. We demonstrate that the measurement procedure is feasible and robust against typical experimental shortcomings such as imperfect two-photon indistinguishability.We present a proof-of-principle experiment demonstrating measurement of the collectibility, a nonlinear entanglement witness proposed by L. Rudnicki et al. [Phys. Rev. Lett. 107, 150502 ( 2011)]. This entanglement witness works for both mixed and pure two-qubit states. In the latter case it can be used to measure entanglement in terms of the negativity. We measured the collectibility for three distinct classes of photonic polarization-encoded two-qubit states, i.e., maximally entangled, separable, and maximally mixed states. We demonstrate that the measurement procedure is feasible and robust against typical experimental shortcomings such as imperfect two-photon indistinguishability.
引用
收藏
页数:7
相关论文
共 38 条
[21]   Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States [J].
Huber, Marcus ;
Mintert, Florian ;
Gabriel, Andreas ;
Hiesmayr, Beatrix C. .
PHYSICAL REVIEW LETTERS, 2010, 104 (21)
[22]   Binegativity and geometry of entangled states in two qubits [J].
Ishizaka, S .
PHYSICAL REVIEW A, 2004, 69 (02) :4
[23]   Taming Multiparticle Entanglement [J].
Jungnitsch, Bastian ;
Moroder, Tobias ;
Guehne, Otfried .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[24]   Ultrabright source of polarization-entangled photons [J].
Kwiat, PG ;
Waks, E ;
White, AG ;
Appelbaum, I ;
Eberhard, PH .
PHYSICAL REVIEW A, 1999, 60 (02) :R773-R776
[25]   Experimental Schmidt Decomposition and State Independent Entanglement Detection [J].
Laskowski, Wieslaw ;
Richart, Daniel ;
Schwemmer, Christian ;
Paterek, Tomasz ;
Weinfurter, Harald .
PHYSICAL REVIEW LETTERS, 2012, 108 (24)
[26]   Concurrence of mixed multipartite quantum states [J].
Mintert, F ;
Kus, M ;
Buchleitner, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[27]   Measures and dynamics of entangled states [J].
Mintert, F ;
Carvalho, ARR ;
Kus, M ;
Buchleitner, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 415 (04) :207-259
[28]   Optimal two-qubit tomography based on local and global measurements: Maximal robustness against errors as described by condition numbers [J].
Miranowicz, Adam ;
Bartkiewicz, Karol ;
Perina, Jan, Jr. ;
Koashi, Masato ;
Imoto, Nobuyuki ;
Nori, Franco .
PHYSICAL REVIEW A, 2014, 90 (06)
[29]   Estimating multipartite entanglement measures [J].
Osterloh, Andreas ;
Hyllus, Philipp .
PHYSICAL REVIEW A, 2010, 81 (02)
[30]   Construction of an Optimal Witness for Unknown Two-Qubit Entanglement [J].
Park, H. S. ;
Lee, S-S B. ;
Kim, H. ;
Choi, S-K ;
Sim, H-S .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)