Stability in a linear delay system without instantaneous negative feedback

被引:21
作者
So, JWH [1 ]
Tang, XH
Zou, XF
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[2] Cent S Univ, Dept Math, Changsha 410083, Hunan, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
关键词
linear system; pure-delay type; stability; diagonal dominant; M-matrix;
D O I
10.1137/S0036141001389263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that every solution of a linear differential system with constant coefficients and time delays tends to zero if a certain matrix derived from the coefficient matrix is a nonsingular M-matrix and the diagonal delays satisfy the so-called 3/2 condition.
引用
收藏
页码:1297 / 1304
页数:8
相关论文
共 16 条
[1]  
Bapat RB., 1997, NONNEGATIVE MATRICES
[2]  
CAMPBELL S, COMMUNICATION
[3]  
Fiedler M., 1986, SPECIAL MATRICES THE
[4]  
Gopalsamy K., 1998, CAN APPL MATH Q, V6, P17
[5]  
Gyori I., 1992, WORLD SCI SER APPL A, V1, P269
[6]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[7]  
He X.Z., 1998, DIFFER INTEGRAL EQU, V11, P293
[8]   Diagonal dominance and harmless off-diagonal delays [J].
Hofbauer, J ;
So, JWH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2675-2682
[9]  
Krisztin T., 1991, Funkcial. Ekvac, V34, P241
[10]   GLOBAL STABILITY IN DELAY-DIFFERENTIAL SYSTEMS WITHOUT DOMINATING INSTANTANEOUS NEGATIVE FEEDBACKS [J].
KUANG, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (02) :503-532