Local Stereology of Tensors of Convex Bodies

被引:8
作者
Jensen, Eva B. Vedel [1 ]
Ziegel, Johanna F. [2 ]
机构
[1] Aarhus Univ, Dept Math, DK-8000 Aarhus C, Denmark
[2] Univ Bern, Inst Math Stat & Acturarial Sci, Dept Math & Stat, Sidlerstr 5, CH-3012 Bern, Switzerland
关键词
Ellipsoidal approximation; Local stereology; Minkowski tensors; Particle shape; Particle orientation; Rotational integral geometry; GENERAL SPHEROID PROBLEM; SHAPE DISTRIBUTIONS; INTEGRAL GEOMETRY; PARTICLE-SIZE;
D O I
10.1007/s11009-013-9337-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we present local stereological estimators of Minkowski tensors defined on convex bodies in a"e (d) . Special cases cover a number of well-known local stereological estimators of volume and surface area in a"e(3), but the general set-up also provides new local stereological estimators of various types of centres of gravity and tensors of rank two. Rank two tensors can be represented as ellipsoids and contain information about shape and orientation. The performance of some of the estimators of centres of gravity and volume tensors of rank two is investigated by simulation.
引用
收藏
页码:263 / 282
页数:20
相关论文
共 26 条
[1]  
[Anonymous], 1998, Local Stereology
[2]   Rotational integral geometry of tensor valuations [J].
Auneau-Cognacq, Jeremy ;
Ziegel, Johanna ;
Jensen, Eva B. Vedel .
ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (03) :429-444
[3]   Extended morphometric analysis of neuronal cells with Minkowski valuations [J].
Beisbart, C. ;
Barbosa, M. S. ;
Wagner, H. ;
Costa, L. da F. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 52 (04) :531-546
[4]  
Beisbart C, 2002, LECT NOTES PHYS, V600, P238
[5]   Stereological unfolding of the trivariate size-shape-orientation distribution of spheroidal particles with application [J].
Benes, V ;
Jiruse, M ;
Slamova, M .
ACTA MATERIALIA, 1997, 45 (03) :1105-1113
[6]   Flowers and wedges for the stereology of particles [J].
Cruz-Orive, L. M. .
JOURNAL OF MICROSCOPY, 2011, 243 (01) :86-102
[7]  
Cruz-Orive Luis M., 2008, Image Analysis & Stereology, V27, P17, DOI 10.5566/ias.v27.p17-22
[8]   A new stereological principle for test lines in three-dimensional space [J].
Cruz-Orive, LM .
JOURNAL OF MICROSCOPY, 2005, 219 :18-28
[9]   UNIQUENESS PROPERTIES OF THE INVARIATOR, LEADING TO SIMPLE COMPUTATIONS [J].
Cruz-Orive, Luis M. .
IMAGE ANALYSIS & STEREOLOGY, 2012, 31 (02) :89-98
[10]  
CRUZORIVE LM, 1976, J MICROSC-OXFORD, V107, P235