We consider the (possibly nonlinear) regression model in with shift parameter in and other parameters in . Residuals are assumed to be from an unknown distribution function (d.f.). Let be a smooth -estimator of and a smooth function. We obtain the asymptotic normality, covariance, bias and skewness of and an estimator of with bias requiring calculations. (In contrast, the jackknife and bootstrap estimators require calculations.) For a linear regression with random covariates of low skewness, if , then has bias (not ) and skewness (not ), and the usual approximate one-sided confidence interval (CI) for has error (not ). These results extend to random covariates.
机构:
Univ La Plata, La Plata, Buenos Aires, Argentina
Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, ArgentinaUniv La Plata, La Plata, Buenos Aires, Argentina
Alvarez, Enrique E.
Yohai, Victor J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, ArgentinaUniv La Plata, La Plata, Buenos Aires, Argentina