Adaptive artifact removal for selective multistatic microwave breast imaging signals

被引:17
作者
Elahi, M. A. [1 ]
Glavin, M. [1 ]
Jones, E. [1 ]
O'Halloran, M. [1 ]
机构
[1] Natl Univ Ireland, Elect & Elect Engn, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
Microwave imaging; Ultra wideband radar; Breast cancer; Multistatic artifact removal; Skin subtraction; Skin-artifact removal;
D O I
10.1016/j.bspc.2017.01.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microwave imaging is one of the most promising alternative breast imaging modalities. Early-stage artifact removal is an important signal processing component of a microwave breast imaging system. In this paper, a monostatic artifact removal algorithm is extended to remove the early-stage artifact from multistatic radar signals. The multistatic radar signals exhibit greater variation in the early-stage artifact due to varying propagation paths between transmitting and receiving antennas. This variation makes it more challenging to estimate and remove the artifact compared to the monostatic signals. This paper proposes an entropy-based adaptive method to group signals with similar artifacts and then remove the artifact from each group separately using a hybrid artifact removal algorithm. The efficacy of the proposed algorithm has been demonstrated by imaging anatomically and dielectrically realistic 3D numerical breast phantoms. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 16 条
[1]   Measuring time-frequency information content using the Renyi entropies [J].
Baraniuk, RG ;
Flandrin, P ;
Janssen, AJEM ;
Michel, OJJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1391-1409
[2]  
Bourqui J, 2015, IEEE MTTS INT MICROW, P125, DOI 10.1109/IMWS-BIO.2015.7303810
[3]  
Elahi M., 2015, P 2015 9 EUROPEAN C, P1
[4]   Hybrid Artifact Removal for Confocal Microwave Breast Imaging [J].
Elahi, M. A. ;
Shahzad, A. ;
Glavin, M. ;
Jones, E. ;
O'Halloran, M. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 :149-152
[5]   ARTIFACT REMOVAL ALGORITHMS FOR MICROWAVE IMAGING OF THE BREAST [J].
Elahi, Muhammad A. ;
Glavin, Martin ;
Jones, Edward ;
O'Halloran, Martin .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 141 :185-200
[6]   Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors [J].
Hagness, SC ;
Taflove, A ;
Bridges, JE .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (12) :1470-1479
[7]  
Helbig M., 2012, Proceedings of the 2012 6th European Conference on Antennas and Propagation (EuCAP), P1737, DOI 10.1109/EuCAP.2012.6206594
[8]   Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms [J].
Klemm, M. ;
Leendertz, J. A. ;
Gibbins, D. ;
Craddock, I. J. ;
Preece, A. ;
Benjamin, R. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2009, 8 :1349-1352
[9]   Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging [J].
Klemm, M. ;
Craddock, I. J. ;
Preece, A. ;
Leendertz, J. ;
Benjamin, R. .
RADIO SCIENCE, 2008, 43 (06)
[10]   A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries [J].
Lazebnik, Mariya ;
Popovic, Dijana ;
McCartney, Leah ;
Watkins, Cynthia B. ;
Lindstrom, Mary J. ;
Harter, Josephine ;
Sewall, Sarah ;
Ogilvie, Travis ;
Magliocco, Anthony ;
Breslin, Tara M. ;
Temple, Walley ;
Mew, Daphne ;
Booske, John H. ;
Okoniewski, Michal ;
Hagness, Susan C. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (20) :6093-6115