Stability and asymptotic analysis of a fluid-particle interaction model

被引:140
作者
Carrillo, Jose A.
Goudon, Thierry [1 ]
机构
[1] Univ Lille 1, Team SIMPAF INRIA, Futurs & Lab Paul Panleve, F-59655 Villeneuve Dascq, France
[2] Autonomous Univ Barcelona, ICREA, Bellaterra, Spain
[3] Autonomous Univ Barcelona, Dept Math, Bellaterra, Spain
关键词
fluid-particles interaction; hydrodynamic limit; stability; Vlasov-Euler system;
D O I
10.1080/03605300500394389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
引用
收藏
页码:1349 / 1379
页数:31
相关论文
共 47 条
[41]   Non-linear stability of gaseous stars [J].
Rein, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 168 (02) :115-130
[42]   Kinetic theory for bubbly flow .1. Collisionless case [J].
Russo, G ;
Smereka, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (02) :327-357
[43]  
Tartar L., 1979, Res. Notes in Math., V39, P136
[44]   Kinetic model for the motion of compressible bubbles in a perfect fluid [J].
Teshukov, VM ;
Gavrilyuk, SL .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2002, 21 (04) :469-491
[45]   On generalized Csiszar-Kullback inequalities [J].
Unterreiter, A ;
Arnold, A ;
Markowich, P ;
Toscani, G .
MONATSHEFTE FUR MATHEMATIK, 2000, 131 (03) :235-253
[46]  
Williams F. A., 1985, COMBUSTION THEORY
[47]   SPRAY COMBUSTION AND ATOMIZATION [J].
WILLIAMS, FA .
PHYSICS OF FLUIDS, 1958, 1 (06) :541-545