Stability and asymptotic analysis of a fluid-particle interaction model

被引:140
作者
Carrillo, Jose A.
Goudon, Thierry [1 ]
机构
[1] Univ Lille 1, Team SIMPAF INRIA, Futurs & Lab Paul Panleve, F-59655 Villeneuve Dascq, France
[2] Autonomous Univ Barcelona, ICREA, Bellaterra, Spain
[3] Autonomous Univ Barcelona, Dept Math, Bellaterra, Spain
关键词
fluid-particles interaction; hydrodynamic limit; stability; Vlasov-Euler system;
D O I
10.1080/03605300500394389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
引用
收藏
页码:1349 / 1379
页数:31
相关论文
共 47 条
[11]   Nonlinear stability in Lp for a confined system of charged particles [J].
Cáceres, MJ ;
Carrillo, JA ;
Dolbeault, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (02) :478-494
[12]   DYNAMIC THEORY OF SUSPENSIONS WITH BROWNIAN EFFECTS [J].
CAFLISCH, R ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :885-906
[13]  
Carrillo JA, 2000, INDIANA U MATH J, V49, P113
[14]   Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities [J].
Carrillo, JA ;
Jüngel, A ;
Markowich, PA ;
Toscani, G ;
Unterreiter, A .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01) :1-82
[15]  
CERCIGNANI C., 1988, APPL MATH SCI, V67
[16]  
CESSENAT M, 1984, C R ACAD SCI PARIS 1, V300, P89
[17]  
DARROZES JS, 1966, CR HEBD ACAD SCI, V262, P369
[18]  
Dautry R., 1985, ANAL MATH CALCUL NUM, V3
[19]   Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: External potential and confinement (large time behavior and steady states) [J].
Dolbeault, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (02) :121-157
[20]   Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics [J].
Dolbeault, J ;
Rein, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (03) :407-432